Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24421-24430, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690964

ABSTRACT

Periprosthetic infections caused by Staphylococcus aureus (S. aureus) pose unique challenges in orthopedic surgeries, in part due to the bacterium's capacity to invade surrounding bone tissues besides forming recalcitrant biofilms on implant surfaces. We previously developed prophylactic implant coatings for the on-demand release of vancomycin, triggered by the cleavage of an oligonucleotide (Oligo) linker by micrococcal nuclease (MN) secreted by the Gram-positive bacterium, to eradicate S. aureus surrounding the implant in vitro and in vivo. Building upon this coating platform, here we explore the feasibility of extending the on-demand release to ampicillin, a broad-spectrum aminopenicillin ß-lactam antibiotic that is more effective than vancomycin in killing Gram-negative bacteria that may accompany S. aureus infections. The amino group of ampicillin was successfully conjugated to the carboxyl end of an MN-sensitive Oligo covalently integrated in a polymethacrylate hydrogel coating applied to titanium alloy pins. The resultant Oligo-Ampicillin hydrogel coating released the ß-lactam in the presence of S. aureus and successfully cleared nearby S. aureus in vitro. When the Oligo-Ampicillin-coated pin was delivered to a rat femoral canal inoculated with 1000 cfu S. aureus, it prevented periprosthetic infection with timely on-demand drug release. The clearance of the bacteria from the pin surface as well as surrounding tissue persisted over 3 months, with no local or systemic toxicity observed with the coating. The negatively charged Oligo fragment attached to ampicillin upon cleavage from the coating did diminish the antibiotic's potency against S. aureus and Escherichia coli (E. coli) to varying degrees, likely due to electrostatic repulsion by the anionic surfaces of the bacteria. Although the on-demand release of the ß-lactam led to adequate killing of S. aureus but not E. coli in the presence of a mixture of the bacteria, strong inhibition of the colonization of the remaining E. coli on hydrogel coating was observed. These findings will inspire considerations of alternative broad-spectrum antibiotics, optimized drug conjugation, and Oligo linker engineering for more effective protection against polymicrobial periprosthetic infections.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Coated Materials, Biocompatible , Prosthesis-Related Infections , Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcus aureus/drug effects , Ampicillin/chemistry , Ampicillin/pharmacology , Rats , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/drug therapy , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Rats, Sprague-Dawley , Microbial Sensitivity Tests , Drug Liberation , Prostheses and Implants
2.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792087

ABSTRACT

In this work, we present the modification of a medical-grade silicone catheter with the N-vinylimidazole monomer using the grafting-from method at room temperature and induced by gamma rays. The catheters were modified by varying the monomer concentration (20-100 vol%) and the irradiation dose (20-100 kGy). Unlike the pristine material, the grafted poly(N-vinylimidazole) chains provided the catheter with hydrophilicity and pH response. This change allowed for the functionalization of the catheters to endow it with antimicrobial features. Thus, the quaternization of amines with iodomethane and bromoethane was performed, as well as the immobilization of silver and ampicillin. The inhibitory capacity of these materials, functionalized with antimicrobial agents, was challenged against Escherichia coli and Staphylococcus aureus strains, showing variable results, where loaded ampicillin was amply better at eliminating bacteria.


Subject(s)
Escherichia coli , Imidazoles , Silicones , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Silicones/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Catheters/microbiology , Microbial Sensitivity Tests , Polyvinyls/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ampicillin/chemistry , Ampicillin/pharmacology , Gamma Rays
3.
Anal Methods ; 16(22): 3522-3529, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38775028

ABSTRACT

To develop a sensitive and simple ampicillin (AMP) sensor for trace antibiotic residue detection, the influencing factors of the modification effect of nanogold-functionalized nucleic acid sequences (Adenine: A, Thymine: T) were comprehensively analyzed in this study, including the modification method, base length and type. It was found that under the same base concentration, longer chains are more likely to reach saturation than shorter chains; and when the base concentration and length are both the same, A exhibits a higher saturation modification level compared to T. Based on these research findings, a highly sensitive fluorescence aptamer sensor for detecting ampicillin was constructed using the optimized functionalized sequence (ployA6-aptamer) and experimental conditions (6 hours binding time between nucleic acid aptamer and complementary strand, pH 7 working solution, 20 minutes detection time) based on the principle of fluorescence resonance energy transfer. The sensor has a detection range of 0.18 ng ml-1 to 3.11 ng ml-1 for ampicillin, with a detection limit of 0.04 ng ml-1. It exhibits significant selectivity and achieves an average recovery rate of 98.71% in tap water and 91.83% in milk. This method can be used not only for residual ampicillin detection, but also for highly sensitive detection of various antibiotics and small biological molecules by replacing the aptamer type. It provides a research basis for the design of highly sensitive fluorescence aptamer sensors and further applications of nanogold@DNA composite structures.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Milk , Aptamers, Nucleotide/chemistry , Ampicillin/analysis , Ampicillin/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Milk/chemistry , Biosensing Techniques/methods , Animals , Fluorescence Resonance Energy Transfer/methods , Metal Nanoparticles/chemistry , Gold/chemistry
4.
Sci Rep ; 14(1): 10066, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698009

ABSTRACT

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Subject(s)
Ampicillin , Biosensing Techniques , Chitosan , Manganese , Sulfides , Zinc Compounds , Ampicillin/analysis , Ampicillin/chemistry , Chitosan/chemistry , Biosensing Techniques/methods , Zinc Compounds/chemistry , Manganese/chemistry , Sulfides/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , beta-Lactamases/analysis , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Milk/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Animals
5.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698253

ABSTRACT

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Subject(s)
Ampicillin , Electrochemical Techniques , Fumonisins , Gold , Limit of Detection , Metal Nanoparticles , Titanium , Fumonisins/analysis , Gold/chemistry , Ampicillin/analysis , Ampicillin/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Titanium/chemistry , Biosensing Techniques/methods , Milk/chemistry , Anti-Bacterial Agents/analysis , Electrodes , Food Contamination/analysis , Animals
6.
Protein J ; 43(3): 559-576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615284

ABSTRACT

In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, ß, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56-50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent ß-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of -26,642.69141/Normalized DOPE score of -1.84041. The DBL monomer was found to consist a ß-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 µg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.


Subject(s)
Anti-Bacterial Agents , Dioclea , Plant Lectins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Mice , Animals , Plant Lectins/chemistry , Plant Lectins/pharmacology , Plant Lectins/isolation & purification , Dioclea/chemistry , Molecular Docking Simulation , Microbial Sensitivity Tests , Ampicillin/pharmacology , Ampicillin/chemistry
7.
Talanta ; 275: 126085, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615458

ABSTRACT

Timely and rapid detection of antibiotic residues in the environment is conducive to safeguarding human health and promoting an ecological virtuous cycle. A foldable paper-based photoelectrochemical (PEC) sensor was successfully developed for the detection of ampicillin (AMP) based on glutathione/zirconium dioxide hollow nanorods/aptamer (GSH@ZrO2 HS@apt) modified cellulose paper as a reactive zone with laser direct-writing lead sulfide/cadmium sulfide/graphene (PbS/CdS/LIG) as photoelectrode and cobalt hydroxide (CoOOH) as a photoresist material. Initially, AMP was introduced into the paper-based reaction zone as a biogate aptamer, which specifically recognized the target and then left the ZrO2 HS surface, releasing glutathione (GSH) encapsulated inside. Subsequently, the introduction of GSH into the reaction region and etching of CoOOH nanosheets to expose the PbS/CdS/LIG photosensitive material increased photocurrent. Under optimal conditions, the paper-based PEC biosensor showed a linear response to AMP in the range of 5.0 - 2 × 104 pM with a detection limit of 1.36 pM (S/N = 3). In addition, the constructed PEC sensing platform has excellent selectivity, high stability and favorable reproducibility, and can be used to assess AMP residue levels in various real water samples (milk, tap water, river water), indicating its promising application in environmental antibiotic detection.


Subject(s)
Ampicillin , Biosensing Techniques , Cadmium Compounds , Cobalt , Electrochemical Techniques , Graphite , Lead , Paper , Sulfides , Graphite/chemistry , Sulfides/chemistry , Biosensing Techniques/methods , Cobalt/chemistry , Electrochemical Techniques/methods , Cadmium Compounds/chemistry , Ampicillin/analysis , Ampicillin/chemistry , Lead/analysis , Lead/chemistry , Lasers , Hydroxides/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Oxides/chemistry , Zirconium/chemistry , Photochemical Processes , Limit of Detection , Aptamers, Nucleotide/chemistry , Glutathione/chemistry , Glutathione/analysis , Animals , Nanostructures/chemistry
8.
Inorg Chem ; 62(29): 11708-11717, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37441738

ABSTRACT

A new iridium(III) complex was synthesized and characterized. Its photophysical properties and aggregation-induced emission and electrochemiluminescence in the near-infrared range were studied. The large conjugated cyclometallic ligand 1,2-phenylbenzoquinoline (pbq) was selected to form the Ir-C bond with the metal iridium(III) center and provide near-infrared emission of the complex. The auxiliary ligand 4,4'-diamino-2,2'-bipyridine (dabpy) can form hydrogen bonds, which was beneficial for the generation of aggregation-induced emission. The complex was aggregated into small spherical nanoparticles in 80% water and fascinating nanorings in 90% water. The sensing of ampicillin sodium (AMP) antibiotic by the iridium(III) complex were also investigated by photoluminescent and electrochemiluminescent methods. The complex showed a good selectivity toward AMP antibiotic compared to sodium phenylacetate and other eight antibiotics. The detection limits for AMP antibiotic was 0.76 µg/mL. This work provided a new strategy for the design of iridium(III) complex-based aggregation-induced emission and electrochemiluminescence probes for the sensing application.


Subject(s)
Luminescent Measurements , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Ampicillin/chemistry , Anti-Bacterial Agents/chemistry , Iridium/chemistry , Luminescent Measurements/methods
9.
Angew Chem Int Ed Engl ; 62(14): e202217412, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36732297

ABSTRACT

Understanding evolution of antibiotic resistance is vital for containing its global spread. Yet our ability to in situ track highly heterogeneous and dynamic evolution is very limited. Here, we present a new single-cell approach integrating D2 O-labeled Raman spectroscopy, advanced multivariate analysis, and genotypic profiling to in situ track physiological evolution trajectory toward resistance. Physiological diversification of individual cells from isogenic population with cyclic ampicillin treatment is captured. Advanced multivariate analysis of spectral changes classifies all individual cells into four subsets of sensitive, intrinsic tolerant, evolved tolerant and resistant. Remarkably, their dynamic shifts with evolution are depicted and spectral markers of each state are identified. Genotypic analysis validates the phenotypic shift and provides insights into the underlying genetic basis. The new platform advances rapid phenotyping resistance evolution and guides evolution control.


Subject(s)
Bacteria , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Ampicillin/pharmacology , Ampicillin/chemistry , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
10.
Anal Chem ; 94(16): 6206-6215, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35427127

ABSTRACT

The presence of antibiotics and their metabolites in milk and dairy products is a serious concern because of their harmful effects on human health. In the current study, a novel synergistic bimetallic nanocluster with gold and silver as an emission fluorescence probe was investigated for the simultaneous determination of tetracycline (TC), ampicillin (AMP), and sulfacetamide (SAC) antibiotics in the milk samples using excitation-emission matrix fluorescence (EEMF) spectroscopy. The multivariate curve resolution-alternating least squares (MCR-ALS) method was implemented to analyze augmented EEMF data sets to quantify the multicomponent systems in the presence of interferences with considerable spectral overlap. A pseudo-univariate calibration curve of the resolved emission spectra intensity against the concentration of the mentioned antibiotics was linear in the range of 5-5000 ng mL-1 for AMP and 50-5000 ng mL-1 for TC and SAC. The calculated values of the limit of detection ranged between 1.4 and 14.6 ng mL-1 with a relative standard deviation (RSD) of less than 4.9%. The obtained results show that the EEMF/MCR-ALS methodology using an emission fluorescence probe is a powerful tool for the simultaneous quantification of TC, AMP, and SAC in complex matrices with highly overlapped spectra.


Subject(s)
Anti-Bacterial Agents , Milk , Animals , Humans , Ampicillin/analysis , Ampicillin/chemistry , Fluorescent Dyes , Least-Squares Analysis , Multivariate Analysis , Tetracycline/analysis , Tetracycline/chemistry
11.
Article in English | MEDLINE | ID: mdl-34506720

ABSTRACT

The aim of this study was to investigate the transfer of cephalexin, penicillin-G, and ampicillin & cloxacillin from cow's milk to cheese and whey. For this purpose, raw milk was artificially contaminated to different antibiotic levels and then heat-treated to prepare fresh cheese from it. Antibiotic levels of the milk, whey and cheese were measured with LC-MS/MS. The extent of heat degradation was not sufficient to remove the antibiotic residues from milk. Antibiotic concentrations in whey and fresh cheese were in good accordance with the concentration of the same compound in milk suggesting that contamination of the milk will result in contamination of the product. The investigated antibiotics were transferred less into the cheese curd (1.6-12.5% of the original amount), than into the whey (33.2-74.1%). For penicillin-G even 100% (complete removal) was experienced.


Subject(s)
Anti-Bacterial Agents/analysis , Cheese/analysis , Food Contamination/analysis , Milk/chemistry , Whey/chemistry , beta-Lactams/analysis , Ampicillin/chemistry , Animals , Cattle , Cephalexin/chemistry , Chromatography, High Pressure Liquid , Cloxacillin/chemistry , Female , Humans , Penicillins/chemistry , Tandem Mass Spectrometry
12.
Chem Commun (Camb) ; 57(80): 10423-10426, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34549224

ABSTRACT

Herein, we propose an element probe based CRISPR/Cas14 detection platform and apply it to the detection of non-nucleic-acid targets. Combining metal isotope detection and CRISPR/Cas14 biosensing, the sensitive detection of non-nucleic-acid targets could be realized. We designed and optimized the element probe, which proved that Cas14 has a preference for longer lengths in element probe cleavage. Using this method, the quantitative detection of trace aqueous ampicillin can be achieved within 45 minutes at room temperature (25 °C). A detection limit as low as 2.06 nM is obtained with excellent performance in anti-interference tests and complex matrix detection.


Subject(s)
Ampicillin/analysis , Anti-Bacterial Agents/analysis , Biosensing Techniques/methods , CRISPR-Cas Systems , Adenosine Monophosphate/analysis , Adenosine Monophosphate/chemistry , Ampicillin/chemistry , Anti-Bacterial Agents/chemistry , Aptamers, Nucleotide/chemistry , CRISPR-Associated Proteins/chemistry , Endodeoxyribonucleases/chemistry , Limit of Detection , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
13.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502284

ABSTRACT

Metallo-ß-lactamases (MBLs) are class B ß-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of ß-lactam antibiotics. A previous study on BLEG-1 (formerly called Bleg1_2437), a hypothetical protein from Bacillus lehensis G1, revealed sequence similarity and activity to B3 subclass MBLs, despite its evolutionary divergence from these enzymes. Its relatedness to glyoxalase II (GLXII) raises the possibility of its enzymatic promiscuity and unique structural features compared to other MBLs and GLXIIs. This present study highlights that BLEG-1 possessed both MBL and GLXII activities with similar catalytic efficiencies. Its crystal structure revealed highly similar active site configuration to YcbL and GloB GLXIIs from Salmonella enterica, and L1 B3 MBL from Stenotrophomonas maltophilia. However, different from GLXIIs, BLEG-1 has an insertion of an active-site loop, forming a binding cavity similar to B3 MBL at the N-terminal region. We propose that BLEG-1 could possibly have evolved from GLXII and adopted MBL activity through this insertion.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Thiolester Hydrolases/chemistry , beta-Lactamases/chemistry , Ampicillin/chemistry , Ampicillin/metabolism , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Glutathione/analogs & derivatives , Glutathione/chemistry , Glutathione/metabolism , Molecular Docking Simulation , Phylogeny , Protein Conformation , Stenotrophomonas maltophilia/enzymology
14.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915741

ABSTRACT

As an important zoonotic pathogen, Streptococcus suis (S. suis) can cause a variety of diseases both in human and animals, especially Streptococcal toxic shock-like syndrome (STSLS), which commonly appears in severe S. suis infection. STSLS is often accompanied by excessive production of inflammatory cytokines, which is the main cause of host death. Therefore, it is urgent to find a new strategy to relieve the damage caused by STSLS. In this study, we found, for the first time, that apigenin, as a flavonoid compound, could combine with ampicillin to treat severe S. suis infection. Studies found that apigenin did not affect the growth of S. suis and the secretion of suilysin (SLY), but it could significantly inhibit the hemolytic activity of SLY by directly binding to SLY and destroying its secondary structure. In cell assays, apigenin was found to have no significant toxic effects on effective concentrations, and have a good protective effect on S. suis-infected cells. More importantly, compared with the survival rate of S. suis-infected mice treated with only ampicillin, the survival rate of apigenin combined with an ampicillin-treated group significantly increased to 80%. In conclusion, all results indicate that apigenin in combination with conventional antibiotics can be a potential strategy for treating severe S. suis infection.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Apigenin/pharmacology , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcus suis/drug effects , Ampicillin/chemistry , Ampicillin/therapeutic use , Animals , Anti-Bacterial Agents/chemistry , Apigenin/chemistry , Apigenin/therapeutic use , Binding Sites , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Erythrocytes/drug effects , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/chemistry , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Streptococcal Infections/diagnosis , Streptococcal Infections/metabolism , Structure-Activity Relationship , Treatment Outcome
15.
Biochim Biophys Acta Biomembr ; 1863(6): 183601, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33675718

ABSTRACT

Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria.


Subject(s)
Bacterial Proteins/chemistry , Neisseria meningitidis/metabolism , Porins/chemistry , Ampicillin/chemistry , Ampicillin/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Liposomes/chemistry , Liposomes/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Permeability/drug effects , Porins/genetics , Porins/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
16.
Carbohydr Polym ; 257: 117593, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33541634

ABSTRACT

In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemical synthesis , Chitosan/pharmacology , Ethylene Oxide/chemistry , Nanoparticles/chemistry , Triazoles/chemistry , Aldehydes/chemistry , Ampicillin/chemistry , Animal Shells , Animals , Anti-Infective Agents , Catalysis , Click Chemistry , Esters , Gentamicins/chemistry , Green Chemistry Technology , Ions , Magnetic Resonance Spectroscopy , Solubility , Solvents , Viscosity
17.
Int J Biol Macromol ; 172: 350-359, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33453258

ABSTRACT

The improper management of wound exudates can expose the wound to bacterial invasion, skin maceration etc. thereby resulting in prolonged wound healing. Biopolymers are characterized by hydrophilic functional groups which when employed for the development of wound dressings promote the wound dressings capability to absorb a high amount of wound exudates. Alginate-gum acacia sponges were prepared from a combination of biopolymers such as sodium alginate and gum acacia in varying amounts with carbopol via crosslinking with 1 and 2% CaCl2. The prepared sponges were loaded with a combination of ampicillin and norfloxacin. In vitro antibacterial analysis revealed that the antibacterial activity of the loaded antibiotics was retained and the sponges were effective against gram-positive and gram-negative bacteria. The sponges displayed rapid and high absorption capability in the range of 1022-2419% at pH 5.5 simulating wound exudates, and 2268-5042% at pH 7.4 simulating blood within a period of 1-3 h. Furthermore, the whole blood clotting studies further revealed low absorbance values when compared to the control revealing the good clotting capability of the sponges. The unique features of the sponges revealed their potential application for the management of infected, high exuding and bleeding wounds.


Subject(s)
Acrylic Resins/chemistry , Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Calcium Chloride/chemistry , Gum Arabic/chemistry , Ampicillin/chemistry , Ampicillin/pharmacology , Anti-Bacterial Agents/chemistry , Blood Coagulation/drug effects , Freeze Drying/methods , Humans , Microbial Sensitivity Tests , Norfloxacin/chemistry , Norfloxacin/pharmacology , Porosity , Proteus vulgaris/drug effects , Proteus vulgaris/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development
18.
J Biol Chem ; 296: 100155, 2021.
Article in English | MEDLINE | ID: mdl-33273017

ABSTRACT

Serine active-site ß-lactamases hydrolyze ß-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most ß-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 ß-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase ß-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 ß-lactamase.


Subject(s)
Anti-Bacterial Agents/chemistry , Escherichia coli/enzymology , Imipenem/chemistry , Klebsiella pneumoniae/enzymology , beta-Lactamases/chemistry , Acylation , Ampicillin/chemistry , Ampicillin/metabolism , Ampicillin/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Cephalothin/chemistry , Cephalothin/metabolism , Cephalothin/pharmacology , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Imipenem/metabolism , Imipenem/pharmacology , Kinetics , Klebsiella pneumoniae/genetics , Meropenem/chemistry , Meropenem/metabolism , Meropenem/pharmacology , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
19.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339207

ABSTRACT

Breast (BrCa) and prostate (PCa) cancers are the most common malignancies in women and men, respectively. The available therapeutic options for these tumors are still not curative and have severe side effects. Therefore, there is an urgent need for more effective antineoplastic agents. Herein, BrCa, PCa, and benign cell lines were treated with two ionic liquids and two quinoxalines and functional experiments were performed-namely cell viability, apoptosis, cytotoxicity, and colony formation assays. At the molecular level, an array of gene expressions encompassing several molecular pathways were used to explore the impact of treatment on gene expression. Although both quinoxalines and the ionic liquid [C2OHMIM][Amp] did not show any effect on the BrCa and PCa cell lines, [C16Pyr][Amp] significantly decreased cell viability and colony formation ability, while it increased the apoptosis levels of all cell lines. Importantly, [C16Pyr][Amp] was found to be more selective for cancer cells and less toxic than cisplatin. At the molecular level, this ionic liquid was also associated with reduced expression levels of CPT2, LDHA, MCM2, and SKP2, in both BrCa and PCa cell lines. Hence, [C16Pyr][Amp] was shown to be a promising anticancer therapeutic agent for BrCa and PCa cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/metabolism , Ionic Liquids/pharmacology , Prostatic Neoplasms/metabolism , Ampicillin/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Humans , Ionic Liquids/chemistry , Male , Pyridinium Compounds/chemistry , Quinoxalines/chemistry
20.
Molecules ; 25(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316879

ABSTRACT

Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-ß-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide-protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.


Subject(s)
Oligopeptides/chemistry , Oligopeptides/chemical synthesis , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamases/drug effects , Amino Acid Sequence , Ampicillin/chemistry , Ampicillin/pharmacology , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Chemical Phenomena , Drug Design , Evolution, Molecular , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Oligopeptides/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Thermodynamics , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/chemistry , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...