Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.063
Filter
2.
Nat Commun ; 15(1): 3996, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734693

ABSTRACT

SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-ß (Aß) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloidosis , Disease Models, Animal , Proto-Oncogene Proteins , Transcriptome , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Mice , Amyloidosis/genetics , Amyloidosis/metabolism , Amyloidosis/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Phenotype , Mice, Transgenic , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/genetics , Humans , Male , Mice, Inbred C57BL , Gene Expression Profiling , Gene Knockdown Techniques , Trans-Activators
3.
Mol Cell Biol ; 44(5): 165-177, 2024.
Article in English | MEDLINE | ID: mdl-38758542

ABSTRACT

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Subject(s)
Amyloidosis , Heat Shock Transcription Factors , Kidney , Mice, Knockout , Unfolded Protein Response , Animals , Amyloidosis/metabolism , Amyloidosis/genetics , Amyloidosis/pathology , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Kidney/pathology , Kidney/metabolism , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/etiology , Mice, Inbred C57BL
4.
Int J Biol Macromol ; 270(Pt 2): 132393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761898

ABSTRACT

Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.


Subject(s)
Copper , Histidine , Protein Binding , Copper/metabolism , Copper/chemistry , Histidine/chemistry , Histidine/metabolism , Humans , Binding Sites , Molecular Dynamics Simulation , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light-chain Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/genetics , Amyloidosis/metabolism , Amyloidosis/genetics , Kinetics
5.
Mol Genet Genomics ; 299(1): 25, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451362

ABSTRACT

Renal amyloid-associated (AA) amyloidosis is a harmful complication of familial Mediterranean fever (FMF). Its occurrence involves polymorphisms and mutations in the Serum Amyloid A1 (SAA1) and Mediterranean Fever (MEFV) genes, respectively. In Algeria, the association between SAA1 variants and FMF-related amyloidosis was not investigated, hence the aim of this case-control study. It included 60 healthy controls and 60 unrelated FMF patients (39 with amyloidosis, and 21 without amyloidosis). All were genotyped for the SAA1 alleles (SAA1.1, SAA1.5, and SAA1.3), and a subset of them for the - 13 C/T polymorphism by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comparisons between genotype and allele frequencies were performed using Chi-square and Fisher tests. The SAA1.1/1.1 genotype was predominant in amyloid FMF patients, compared to non-amyloid FMF patients (p = 0.001) and controls (p < 0.0001). SAA1.1/1.5 was higher in non-amyloid patients (p = 0.0069) and in controls (p = 0.0082) than in patients with amyloidosis. Bivariate logistic regression revealed an increased risk of AA amyloidosis with three genotypes, SAA1.1/1.1 [odds ratio 7.589 (OR); 95% confidence interval (CI): 2.130-27.041] (p = 0.0018), SAA1.1/1.3 [OR 5.700; 95% CI: 1.435-22.644] (p = 0.0134), and M694I/M694I [OR 4.6; 95% CI: 1.400-15.117] (p = 0.0119). The SAA1.1/1.5 genotype [OR 0.152; 95% CI: 0.040-0.587] (p = 0.0062) was protective against amyloidosis. In all groups, the - 13 C/C genotype predominated, and was not related to renal complication [OR 0.88; 95% CI: 0.07-10.43] (p = 0.915). In conclusion, in contrast to the - 13 C/T polymorphism, the SAA1.1/1.1, SAA1.1/1.3 and M694I/M694I genotypes may increase the risk of developing renal AA amyloidosis in the Algerian population.


Subject(s)
Amyloidosis , Familial Mediterranean Fever , Humans , Familial Mediterranean Fever/complications , Familial Mediterranean Fever/genetics , Case-Control Studies , Amyloidosis/genetics , Risk Factors , Pyrin , Serum Amyloid A Protein
7.
Aging Cell ; 23(5): e14121, 2024 May.
Article in English | MEDLINE | ID: mdl-38450924

ABSTRACT

Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aß40 and Aß42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Disease Models, Animal , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice , Amyloidosis/pathology , Amyloidosis/metabolism , Amyloidosis/genetics , Female , Cognitive Dysfunction/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Brain/pathology , Brain/metabolism , Telomere/metabolism , Telomere/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Sex Characteristics , Mice, Inbred C57BL , Presenilin-1/genetics , Presenilin-1/metabolism , Micronuclei, Chromosome-Defective
8.
Hum Genomics ; 18(1): 31, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523305

ABSTRACT

PURPOSE: Coding mutations in the Transthyretin (TTR) gene cause a hereditary form of amyloidosis characterized by a complex genotype-phenotype correlation with limited information regarding differences among worldwide populations. METHODS: We compared 676 diverse individuals carrying TTR amyloidogenic mutations (rs138065384, Phe44Leu; rs730881165, Ala81Thr; rs121918074, His90Asn; rs76992529, Val122Ile) to 12,430 non-carriers matched by age, sex, and genetically-inferred ancestry to assess their clinical presentations across 1,693 outcomes derived from electronic health records in UK biobank. RESULTS: In individuals of African descent (AFR), Val122Ile mutation was linked to multiple outcomes related to the circulatory system (fold-enrichment = 2.96, p = 0.002) with the strongest associations being cardiac congenital anomalies (phecode 747.1, p = 0.003), endocarditis (phecode 420.3, p = 0.006), and cardiomyopathy (phecode 425, p = 0.007). In individuals of Central-South Asian descent (CSA), His90Asn mutation was associated with dermatologic outcomes (fold-enrichment = 28, p = 0.001). The same TTR mutation was linked to neoplasms in European-descent individuals (EUR, fold-enrichment = 3.09, p = 0.003). In EUR, Ala81Thr showed multiple associations with respiratory outcomes related (fold-enrichment = 3.61, p = 0.002), but the strongest association was with atrioventricular block (phecode 426.2, p = 2.81 × 10- 4). Additionally, the same mutation in East Asians (EAS) showed associations with endocrine-metabolic traits (fold-enrichment = 4.47, p = 0.003). In the cross-ancestry meta-analysis, Val122Ile mutation was associated with peripheral nerve disorders (phecode 351, p = 0.004) in addition to cardiac congenital anomalies (fold-enrichment = 6.94, p = 0.003). CONCLUSIONS: Overall, these findings highlight that TTR amyloidogenic mutations present ancestry-specific and ancestry-convergent associations related to a range of health domains. This supports the need to increase awareness regarding the range of outcomes associated with TTR mutations across worldwide populations to reduce misdiagnosis and delayed diagnosis of TTR-related amyloidosis.


Subject(s)
Amyloidosis , Prealbumin , Humans , Prealbumin/genetics , Mutation , Amyloidosis/diagnosis , Amyloidosis/genetics , Phenotype , Genetics, Population
9.
Kidney Int ; 105(4): 666-669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519232

ABSTRACT

Amyloidosis is a rare cause of inherited kidney disease, with most variants responsible for prominent glomerular involvement. In this issue, Kmochová et al. reported the first description of autosomal dominant medullary amyloidosis due to apolipoprotein A4 variants, resulting in slowly progressive chronic kidney disease with minimal proteinuria. Combining next-generation sequencing with histopathological studies incorporating Congo red staining and mass spectrometry should be considered in the diagnostic workup of hereditary tubulointerstitial disorders not identified after routine genetic testing.


Subject(s)
Amyloidosis , Nephritis, Interstitial , Renal Insufficiency, Chronic , Humans , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/genetics , Nephritis, Interstitial/complications , Amyloidosis/diagnosis , Amyloidosis/genetics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Genetic Testing
11.
JAMA ; 331(9): 778-791, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38441582

ABSTRACT

Importance: Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations: Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance: ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.


Subject(s)
Amyloidosis , Cardiomyopathies , Heart Failure , Prealbumin , Humans , Amyloidosis/complications , Amyloidosis/epidemiology , Amyloidosis/genetics , Amyloidosis/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Heart Failure/etiology , Heart Failure/genetics , Heart Failure/metabolism , Immunoglobulin Light-chain Amyloidosis , Prealbumin/genetics , Prealbumin/metabolism , Black or African American/ethnology , Black or African American/genetics , Black or African American/statistics & numerical data , United States/epidemiology , Africa, Western , Protein Folding
12.
Protein Sci ; 33(3): e4931, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38380705

ABSTRACT

The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.


Subject(s)
Amyloidosis , Glycosaminoglycans , Humans , Prealbumin/genetics , Amyloidosis/genetics , Amyloidosis/metabolism , Amyloid/metabolism , Heparin
13.
J Am Assoc Nurse Pract ; 36(1): 3-5, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38165779

ABSTRACT

ABSTRACT: Familial Mediterranean fever (FMF) is an inherited, autoinflammatory disease with a high prevalence in Middle Eastern and Mediterranean populations including Turks, Iranian, Spanish, Sephardic Jews, Arabs, and other Mediterranean ethnic groups. Autoinflammatory diseases are genetically predetermined disorders with multisystem effects primarily caused by defects in innate immunity. Although primarily known for an autosomal recessive mode of inheritance, there are increasing case reports associated with single Mediterranean fever (MEFV) mutation or dominant transmission. There have been over 300 variants identified in the MEFV gene; however, roughly 9-11 variants are responsible for the phenotypical expression seen with FMF. Symptoms include recurrent episodes of fever of unknown origin, abdominal, chest, or joint pain because of serosal inflammation. Persistent elevations in serum amyloid A can lead to complications like renal amyloidosis, kidney dysfunction, and end-stage kidney disease. Familial Mediterranean fever is diagnosed clinically using the Tel-Hashomer criteria and confirmed through genetic testing. Treatment includes initiation of colchicine with the goal of stopping attacks and preventing renal dysfunction and end-stage kidney disease. Genetic testing helps to identify the specific mutation allowing the provider to create a patient-specific treatment plan, monitor for complications such as renal amyloidosis, and enhance knowledge on the genetic heterogeneity and possible epigenetic factors.


Subject(s)
Amyloidosis , Familial Mediterranean Fever , Kidney Failure, Chronic , Humans , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/complications , Iran , Colchicine/therapeutic use , Amyloidosis/genetics , Amyloidosis/complications , Mutation/genetics , Kidney Failure, Chronic/complications , Pyrin/genetics
14.
J Mol Biol ; 436(4): 168441, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38199491

ABSTRACT

Amyloid resistance is the inability or the reduced susceptibility of an organism to develop amyloidosis. In this study we have analysed the molecular basis of the resistance to systemic AApoAII amyloidosis, which arises from the formation of amyloid fibrils from apolipoprotein A-II (ApoA-II). The disease affects humans and animals, including SAMR1C mice that express the C allele of ApoA-II protein, whereas other mouse strains are resistant to development of amyloidosis due to the expression of other ApoA-II alleles, such as ApoA-IIF. Using cryo-electron microscopy, molecular dynamics simulations and other methods, we have determined the structures of pathogenic AApoAII amyloid fibrils from SAMR1C mice and analysed the structural effects of ApoA-IIF-specific mutational changes. Our data show that these changes render ApoA-IIF incompatible with the specific fibril morphologies, with which ApoA-II protein can become pathogenic in vivo.


Subject(s)
Amyloid , Amyloidosis , Apolipoprotein A-II , Animals , Mice , Amyloid/chemistry , Amyloid/genetics , Amyloidosis/genetics , Amyloidosis/metabolism , Apolipoprotein A-II/chemistry , Apolipoprotein A-II/genetics , Cryoelectron Microscopy , Alleles , Molecular Dynamics Simulation , Mutation , Mice, Mutant Strains
15.
Amyloid ; 31(1): 12-21, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37486102

ABSTRACT

BACKGROUND: Technetium-99m-pyrophosphate (99mTc-PYP) uptake in the internal oblique muscle (IOM), which is often observed in patients with wild-type transthyretin cardiac amyloidosis (ATTR-CA), indicates amyloid transthyretin (ATTR) deposition. OBJECTIVE: This study aimed to assess the safety and efficacy of 99mTc-PYP imaging-based computed tomography (CT)-guided core-needle biopsy of the IOM as a new extracardiac screening biopsy for confirming the presence of ATTR deposits. METHODS: Patients with suspected ATTR-CA in whom myocardial tracer uptake was detected on chest- and abdomen-centered images of 99mTc-PYP scintigraphy underwent CT-guided core-needle biopsy at the site with the highest tracer uptake in the IOM between September 2021 and November 2022. RESULTS: All 18 consecutive patients (mean age, 86.3 years ± 6.5; 61.1% male) enrolled in the study showed 99mTc-PYP uptake into the IOM. Adequate tissue samples were obtained from all patients except one without serious complications. Immunohistochemical analysis confirmed ATTR deposits in 16/18 (88.9%) patients. In the remaining two patients, ATTR deposits were observed via endomyocardial biopsy. All patients were diagnosed with wild-type ATTR-CA based on transthyretin gene sequence testing results. CONCLUSION: In wild-type ATTR-CA, 99mTc-PYP imaging-based CT-guided core-needle biopsy of the IOM could be used as an extracardiac screening biopsy to confirm the presence of ATTR deposits.


Subject(s)
Amyloidosis , Cardiomyopathies , Humans , Male , Aged, 80 and over , Female , Technetium Tc 99m Pyrophosphate , Diphosphates , Technetium , Prealbumin/genetics , Abdominal Oblique Muscles , Amyloidosis/genetics , Tomography, X-Ray Computed , Biopsy , Biopsy, Needle , Cardiomyopathies/diagnostic imaging , Radiopharmaceuticals
17.
J Investig Med ; 72(1): 17-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37803493

ABSTRACT

The most important complication of familial Mediterranean fever (FMF) is secondary amyloidosis. The aim of this study is to investigate the risk of developing FMF-related amyloidosis with macrophage migration inhibitory factor (MIF), interleukin 4 (IL-4), and IL-1 receptor antagonist (IL-1RA) variants. This study included 62 FMF patients with amyloidosis, 110 FMF patients without amyloidosis, and 120 controls. The clinical information of the patient groups was compared. MIF-173G/C, IL-4 variant number tandem repeat (VNTR), and IL-1RA VNTR variants were analyzed for all participants. The use of colchicine, pleurisy, and appendectomy was more common in FMF patients with amyloidosis than in FMF patients without amyloidosis. MIF-173G/C C/C genotype and C allele were higher in both patient groups compared to controls. IL-1RA VNTR A1/A2 and A1/A4 genotypes and A1-A4 alleles were more common in both patient groups than controls. The IL-4 VNTR P1 allele was more common in FMF patients with amyloidosis compared to controls. The MIF-173G/C allele and the IL-1RA VNTR A1-A4 allele are associated with FMF in the Turkish population but not with amyloidosis risk in FMF patients. The IL-4 VNTR P1 allele is more common in FMF patients with amyloidosis than in healthy individuals.


Subject(s)
Amyloidosis , Familial Mediterranean Fever , Macrophage Migration-Inhibitory Factors , Humans , Amyloidosis/genetics , Familial Mediterranean Fever/complications , Familial Mediterranean Fever/genetics , Genetic Predisposition to Disease , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-4/genetics , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Polymorphism, Single Nucleotide , Tandem Repeat Sequences
19.
Hum Immunol ; 85(1): 110742, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103944

ABSTRACT

OBJECTIVES: There is still controversy regarding the causal relationship between ankylosing spondylitis (AS) and secondary systemic amyloidosis (SSA). This study utilized aggregated data from genome-wide association studies (GWAS) on population cohorts to investigate whether a causal relationship exists between AS and SSA. METHODS: The genetic causal relationship between AS status and SSA was analyzed utilizing a two-sample Mendelian randomization (TSMR). The analyses were conducted using the weighted mode method (WM2), inverse variance weighted method (IVW), simple mode (SM), weighted median method (WM1), and Mendelian randomization Egger regression (MR-Egger). Among these methods, the primary results were based on the IVW approach. The association was evaluated using the odds ratio (OR) along with a 95% confidence interval (95% CI). RESULTS: The IVW analysis revealed a positive causal relationship between AS status and SSA (OR = 1.411, 95 % CI = 1.069, 1.862, P = 0.015). Meanwhile, the WM1 (OR = 1.394, 95 % CI = 1.115, 1.742, P = 0.004) and WM2 (OR = 1.393, 95 % CI = 1.112, 1.743, P = 0.045) methods also identified a positive causal relationship between AS status and SSA. The MR-Egger method did not identify a causal relationship between AS and SSA (OR = 1.175, 95 % CI = 0.888, 1.555, P = 0.342). The SM results demonstrated that the observed genotypes did not exhibit statistically significant differences between AS and SSA (OR = 1.184, 95 % CI = 0.416, 3.366, P = 0.767). The results of the MR-Egger regression suggested that the results were unaffected by bias caused by genetic pleiotropy (Intercept = 0.283, SE = 0.134, P = 0.126). Cochran's Q test did not reveal any significant heterogeneity (Q = 1.759, P = 0.624). The "leave-one-out" analysis further confirmed that the absence of any single SNP did not impact the robustness of our results. CONCLUSION: This study revealed a positive causal relationship between AS status and the occurrence of SSA, providing new insights into the genetic analysis of SSA.


Subject(s)
Amyloidosis , Spondylitis, Ankylosing , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Spondylitis, Ankylosing/epidemiology , Spondylitis, Ankylosing/genetics , Amyloidosis/genetics , Genotype
20.
Genes (Basel) ; 14(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38136948

ABSTRACT

AA-amyloidosis in Siamese and Oriental shorthair cats is a lethal condition in which amyloid deposits accumulate systemically, especially in the liver and the thyroid gland. The age at death of affected cats varies between one and seven years. A previous study indicated a complex mode of inheritance involving a major locus. In the present study, we performed a multi-locus genome-wide association study (GWAS) using five methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB and ISIS EM-BLASSO) to identify variants associated with AA-amyloidosis in Siamese/Oriental cats. We genotyped 20 affected mixed Siamese/Oriental cats from a cattery and 48 healthy controls from the same breeds using the Illumina Infinium Feline 63 K iSelect DNA array. The multi-locus GWAS revealed eight significantly associated single nucleotide polymorphisms (SNPs) on FCA A1, D1, D2 and D3. The genomic regions harboring these SNPs contain 55 genes, of which 3 are associated with amyloidosis in humans or mice. One of these genes is SAA1, which encodes for a member of the Serum Amyloid A family, the precursor protein of Amyloid A, and a mutation in the promotor of this gene causes hereditary AA-amyloidosis in humans. These results provide novel knowledge regarding the complex genetic background of hereditary AA-amyloidosis in Siamese/Oriental cats and, therefore, contribute to future genomic studies of this disease in cats.


Subject(s)
Amyloidosis, Familial , Amyloidosis , Humans , Cats/genetics , Animals , Mice , Infant , Child, Preschool , Child , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genome , Liver/metabolism , Amyloidosis/genetics , Amyloidosis/veterinary , Amyloidosis, Familial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...