Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.759
Filter
1.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
2.
Nat Commun ; 15(1): 4867, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849367

ABSTRACT

Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Interneurons , Mice, Transgenic , Motor Neurons , Synapses , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Interneurons/metabolism , Motor Neurons/metabolism , Mice , Synapses/metabolism , Phenotype , Male , Genetic Therapy/methods , Humans , Female , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
3.
Open Biol ; 14(6): 230418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835240

ABSTRACT

Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into ß-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in ß-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that ß-strands II and III may be good targets for the development of SOD1-associated ALS therapies.


Subject(s)
Amyotrophic Lateral Sclerosis , Protein Aggregates , Superoxide Dismutase-1 , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/chemistry , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Mutation , Protein Conformation, beta-Strand , Models, Molecular , Proline/metabolism , Amyloid/metabolism , Amyloid/chemistry , Protein Folding
4.
Proc Natl Acad Sci U S A ; 121(24): e2400732121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838021

ABSTRACT

Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , DNA-Binding Proteins , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Animals , Cyclic AMP/metabolism , Drosophila melanogaster/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Humans , Motor Neurons/metabolism
5.
Mol Brain ; 17(1): 32, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840222

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor neuron. One aspect of the neuropathology involved in ALS includes increased genomic damage and impaired DNA repair capability. The TAR-DNA binding protein 43 (TDP43) has been associated with both sporadic and familial forms of ALS, and is typically observed as cytosolic mislocalization of protein aggregates, termed TDP43 proteinopathy. TDP43 is a ubiquitous RNA/DNA binding protein with functional implications in a wide range of disease processes, including the repair of DNA double-strand breaks (DSBs). While TDP43 is widely known to regulate RNA metabolism, our lab has reported it also functions directly at the protein level to facilitate DNA repair. Here, we show that the TDP43 protein interacts with DNA mismatch repair (MMR) proteins MLH1 and MSH6 in a DNA damage-inducible manner. We utilized differentiated SH-SY5Y neuronal cultures to identify this inducible relationship using complementary approaches of proximity ligation assay (PLA) and co-immunoprecipitation (CoIP) assay. We observed that signals of TDP43 interaction with MLH1 and MSH6 increased significantly following a 2 h treatment of 10 µM methylmethanesulfonate (MMS), a DNA alkylating agent used to induce MMR repair. Likewise, we observed this effect was abolished in cell lines treated with siRNA directed against TDP43. Finally, we demonstrated these protein interactions were significantly increased in lumbar spinal cord samples of ALS-affected patients compared to age-matched controls. These results will inform our future studies to understand the mechanisms and consequences of this TDP43-MMR interaction in the context of ALS-affected neurons.


Subject(s)
DNA Damage , DNA-Binding Proteins , MutL Protein Homolog 1 , Protein Binding , Humans , DNA-Binding Proteins/metabolism , MutL Protein Homolog 1/metabolism , Protein Binding/drug effects , Cell Line, Tumor , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Neurons/metabolism , Middle Aged , Male
6.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38760174

ABSTRACT

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Subject(s)
Amyotrophic Lateral Sclerosis , Glycolates , Lactic Acid , Mitochondria , Protein Deglycase DJ-1 , RNA-Binding Protein FUS , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Glycolates/metabolism , Glycolates/pharmacology , Mitochondria/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Lactic Acid/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Membrane Potential, Mitochondrial , Motor Neurons/metabolism , Lysosomes/metabolism
7.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742276

ABSTRACT

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Disease Models, Animal , Matrix Metalloproteinase 9 , Mice, Transgenic , Microglia , Animals , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/pathology , Mice , Matrix Metalloproteinase 9/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Motor Neurons/pathology , Motor Neurons/metabolism , Phagocytosis/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
8.
Nat Commun ; 15(1): 3606, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697975

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Motor Neurons , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Male , Female , Middle Aged , Case-Control Studies , Chromatin/metabolism , Chromatin/genetics , Aged , Epigenomics/methods , Chromatin Immunoprecipitation Sequencing/methods , Disease Progression , Epigenesis, Genetic
9.
FASEB J ; 38(10): e23647, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38787599

ABSTRACT

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Arginine , Muscle, Skeletal , Protein-Arginine N-Methyltransferases , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Arginine/metabolism , Arginine/analogs & derivatives , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Mice , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Male , Methylation , Female , Protein Processing, Post-Translational , Mice, Inbred C57BL , Proteome/metabolism
10.
Neurobiol Dis ; 197: 106534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759931

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Mice, Transgenic , Mitochondrial Proteins , Mitophagy , Motor Neurons , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Mitophagy/physiology , Motor Neurons/metabolism , Motor Neurons/pathology , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Spinal Cord/metabolism , Spinal Cord/pathology
11.
Int Rev Neurobiol ; 176: 171-207, 2024.
Article in English | MEDLINE | ID: mdl-38802175

ABSTRACT

Engineering new solutions for therapeutic benefit in Amyotrophic Lateral Sclerosis (ALS) has proved a difficult task to accomplish. This is largely the reflection of complexities at multiple levels, that require solutions to improve cost-effectiveness and outcomes. The main obstacle related to the condition's clinical heterogeneity, chiefly the broad difference in survival observed among ALS patients, imposes large populations studies and long follow-up to evaluate any efficacy. The emerging solution is composite clinical and biological parameters enabling prognostic stratification into homogeneous phenotypes for more affordable studies. From a therapeutic development perspective, the choice of a medicinal product requires the availability of treatment-specific biomarkers of target engagement to identify off-target effects based on the compound's putative modality of action. More importantly, there are no established biomarkers of treatment response that can complement clinical outcome measures and support futility and end of treatment analyses of efficacy. Ultimately the onus rests on the development of biomarkers encompassing the unmet needs of clinical trial design, from inclusion to efficacy. These readouts of the pathological process may be used in combination with clinical and paraclinical outcome measured, significantly reducing the time and financial burden of clinical studies. Progress towards a biomarker-driven clinical trial design in ALS has been possible thanks to the accurate detection of neurofilaments and of other immunological mediators in biological fluids with the disease progression, a step change enabling the testing of novel therapeutic agents in a new clinical trial setting. However, further progress remains to be made to find treatment specific target engagement biomarkers along with readouts of treatment response that can be reliably applied to all emerging therapies and clinical studies. Here we will cover the basic notions of biomarker development in ALS clinical trials, the most crucial unanswered questions and the unmet needs in the ALS biomarkers space.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Clinical Trials as Topic , Humans , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Clinical Trials as Topic/methods
12.
Int Rev Neurobiol ; 176: 209-268, 2024.
Article in English | MEDLINE | ID: mdl-38802176

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.


Subject(s)
Amyotrophic Lateral Sclerosis , Genomics , Systems Biology , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/therapy , Systems Biology/methods , Genomics/methods , Proteomics/methods , Animals
13.
Int Rev Neurobiol ; 176: 455-479, 2024.
Article in English | MEDLINE | ID: mdl-38802180

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Subject(s)
Amyotrophic Lateral Sclerosis , Cytoplasmic Granules , Ribonucleoproteins , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/metabolism , Neurodegenerative Diseases/metabolism , Organelles/metabolism
14.
Int Rev Neurobiol ; 176: 269-325, 2024.
Article in English | MEDLINE | ID: mdl-38802177

ABSTRACT

Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.


Subject(s)
Amyotrophic Lateral Sclerosis , Mitochondria , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Mitochondria/metabolism , Animals , Reactive Oxygen Species/metabolism , Disease Models, Animal , Oxidative Stress/physiology
15.
PLoS One ; 19(5): e0301267, 2024.
Article in English | MEDLINE | ID: mdl-38753768

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontal Lobe , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Female , Male , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism
16.
Nat Commun ; 15(1): 4163, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755145

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Neurons , TDP-43 Proteinopathies , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Female , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Neurons/metabolism , Neurons/pathology , Brain/metabolism , Brain/pathology , Male , Motor Cortex/metabolism , Motor Cortex/pathology
17.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791099

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Insulin , Islet Amyloid Polypeptide , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/blood , Male , Female , Middle Aged , Aged , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/blood , Cross-Sectional Studies , Biomarkers/blood , Insulin/metabolism , Insulin/blood , Disease Progression , Leptin/blood , Leptin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood , C-Peptide/blood , C-Peptide/metabolism , Ghrelin/metabolism , Ghrelin/blood , Glucagon/blood , Glucagon/metabolism , Adult , Hormones/metabolism , Hormones/blood
18.
Acta Neuropathol ; 147(1): 84, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750212

ABSTRACT

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , DNA-Binding Proteins , Mitochondrial Proteins , Transcription Factors , Astrocytes/pathology , Astrocytes/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/pathology , Mitochondria/metabolism , Male , Female , Middle Aged , Aged
19.
Sci Adv ; 10(22): eadk3229, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820149

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of somatic motor neurons. A major focus has been directed to motor neuron intrinsic properties as a cause for degeneration, while less attention has been given to the contribution of spinal interneurons. In the present work, we applied multiplexing detection of transcripts and machine learning-based image analysis to investigate the fate of multiple spinal interneuron populations during ALS progression in the SOD1G93A mouse model. The analysis showed that spinal inhibitory interneurons are affected early in the disease, before motor neuron death, and are characterized by a slow progressive degeneration, while excitatory interneurons are affected later with a steep progression. Moreover, we report differential vulnerability within inhibitory and excitatory subpopulations. Our study reveals a strong interneuron involvement in ALS development with interneuron specific degeneration. These observations point to differential involvement of diverse spinal neuronal circuits that eventually may be determining motor neuron degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Interneurons , Mice, Transgenic , Motor Neurons , Spinal Cord , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Mice , Interneurons/metabolism , Interneurons/pathology , Spinal Cord/pathology , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Humans , Disease Progression , Nerve Degeneration/pathology
20.
Neurosci Lett ; 833: 137829, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38788796

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has been reported to be affected by inflammatory cells, such as microglia and macrophages, through the concept of non-cell autonomous neuronal death. Resident microglia in the human brain and monocyte-derived macrophages (MoDM) infiltrating in tissues are difficult to distinguish. Therefore, the effects of microglia and MoDMs in ALS remain poorly understood. This study aimed to investigate the role of resident microglia and MoDMs in the pathogenesis of ALS using postmortem brain and spinal cord samples. The samples used for immunohistochemical analysis included 11 cases of sporadic ALS and 11 age-matched controls. We stained the cells with TMEM119 to detect resident microglia and CCR2 to detect MoDMs. In ALS cases, TMEM119-immunopositive resident microglia were abundant in the motor cortex and subcortical white matter (SWM) of the motor area, whereas CCR2-immunopositive MoDM was similar to control cases. In addition, the mean density of CD68-immunopositive cells in the SWM significantly correlated with the mean density of pTDP-43-positive GCIs. These results suggest that resident microglial activation plays an important role in the cerebral pathogenesis of ALS and may provide novel therapeutic strategies to target excessive activation of resident microglia in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain , Membrane Proteins , Microglia , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Microglia/metabolism , Microglia/pathology , Male , Female , Aged , Middle Aged , Membrane Proteins/metabolism , Brain/pathology , Brain/metabolism , Macrophages/metabolism , Macrophages/pathology , Receptors, CCR2/metabolism , White Matter/pathology , White Matter/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...