Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Compr Rev Food Sci Food Saf ; 23(3): e13359, 2024 05.
Article in English | MEDLINE | ID: mdl-38720571

ABSTRACT

The recent increase in the harvesting and industrial processing of tropical fruits such as pineapple and papaya is leading to unavoidable amounts of byproducts rich in valuable compounds. Given the significance of the chemical composition of these byproducts, new research avenues are opening up to exploit them in the food industry. In this sense, the revalorization of pineapple and papaya byproducts is an emerging trend that is encouraging the full harnessing of these tropical fruits, offering the opportunity for developing innovative value-added products. Therefore, the main aim of this review is to provide an overview of the state of the art of the current valorization applications of pineapple and papaya byproducts in the field of food industry. For that proposal, comprehensive research of valorization applications developed in the last years has been conducted using scientific databases, databases, digital libraries, and scientific search engines. The latest valorization applications of pineapple and papaya byproducts in the food industry have been systematically revised and gathered with the objective of synthesizing and critically analyzing existing scientific literature in order to contribute to the advancement of knowledge in the field of tropical byproduct revalorization providing a solid foundation for further research and highlighting scientific gaps and new challenges that should be addressed in the future.


Subject(s)
Ananas , Carica , Fruit , Carica/chemistry , Ananas/chemistry , Fruit/chemistry , Food Industry , Food Handling/methods
2.
Food Chem ; 451: 139440, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692245

ABSTRACT

The preservation of fresh-cut fruits and vegetables has attracted attention to the shelf-life reduction caused by high humidity. Herein, alginate/copper ions cross-linking, in-situ growth and self-assembly techniques of metal-organic frameworks (MOFs) were utilized to prepare a moisture responsive hydrogel bead (HKUST-1@ALG). As the multistage porous structure formation, tea tree essential oil (TTO) load capacity in hydrogel bead (TTO-HKUST-1@ALG) was increased from 6.1% to 21.6%. TTO-HKUST-1@ALG had excellent moisture response performance, and the release rates of TTO increased from 33.89% to 70.98% with moisture increasing from 45% to 95%. Besides, TTO-HKUST-1@ALG exhibited excellent antimicrobial, antioxidant capacity, and biocompatibility. During storage, TTO-HKUST-1@ALG effectively improved the cell membrane integrity by maintaining the balance of reactive oxygen species metabolism. The degradation of cell wall structure and tissue softening were delayed by inhibiting the cell wall-degrading enzymes activity. Briefly, TTO-HKUST-1@ALG improved the storage quality and extended shelf-life of fresh-cut pineapple, which was a promising preservative.


Subject(s)
Ananas , Food Preservation , Hydrogels , Metal-Organic Frameworks , Oils, Volatile , Ananas/chemistry , Oils, Volatile/chemistry , Hydrogels/chemistry , Metal-Organic Frameworks/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Fruit/chemistry , Antioxidants/chemistry , Food Preservatives/pharmacology , Food Preservatives/chemistry
3.
Food Chem ; 451: 139454, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703725

ABSTRACT

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.


Subject(s)
Gold , Rosaniline Dyes , Silicon , Spectrum Analysis, Raman , Rosaniline Dyes/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Silicon/chemistry , Animals , Ananas/chemistry , Metal Nanoparticles/chemistry , Bivalvia/chemistry , Limit of Detection , Surface Properties
4.
Int J Biol Macromol ; 270(Pt 1): 132299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735609

ABSTRACT

Mulch films were fabricated from polylactic acid (PLA) with cellulose nanocrystals (PNC) extracted from pineapple leaves. The PNC was modified by incorporating 4 wt% triethoxyvinylsilane (TEVS), designated as 4PNC, to enhance its interaction with PLA. The films incorporated varying concentrations of PNC (1, 2, 4, and 8 wt%). The results indicated that higher PNC concentrations increased the water vapor permeability (WVP) and biodegradability of the composite films, while reducing light transmission. Films containing 4PNC, particularly at 4 wt% (PLA/4PNC-4), exhibited an 11.18 % increase in elongation at break compared to neat PLA films. Moreover, these films showed reduced light transmission, correlating with decreased weed growth, reduced WVP, and enhanced barrier properties, indicative of improved soil moisture retention. Additionally, PLA films with 4PNC demonstrated greater thermal degradation stability than those with unmodified PNC, suggesting enhanced heat resistance. However, there was no significant difference in aerobic biodegradation between the PLA films with PNC and those with 4PNC. This study confirms that TEVS-modified cellulose significantly enhances the properties of bio-composite films, making them more suitable for mulch film applications.


Subject(s)
Ananas , Cellulose , Permeability , Plant Leaves , Polyesters , Ananas/chemistry , Cellulose/chemistry , Polyesters/chemistry , Plant Leaves/chemistry , Nanoparticles/chemistry , Steam
5.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38651221

ABSTRACT

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Subject(s)
Ananas , Genome, Plant , Plant Proteins , Proteogenomics , Tandem Mass Spectrometry , Ananas/genetics , Ananas/chemistry , Proteogenomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Chromatography, Liquid , Proteome/genetics , Proteome/analysis , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/chemistry , Peptides/genetics , Peptides/analysis , Peptides/chemistry
6.
Food Chem ; 451: 139417, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678651

ABSTRACT

In this study, an antibacterial material (CNF@CoMn-NS) with oxidase-like activity was created using ultrathin cobalt­manganese nanosheets (CoMn-NS) with a larger specific surface area grown onto pineapple peel cellulose nanofibrils (CNF). The results showed that the CoMn-NS grew well on the CNF, and the obtained CNF@CoMn-NS exhibited good oxidase-like activity. The imidazole salt framework of the CNF@CoMn-NS contained cobalt and manganese in multiple oxidation states, enabling an active redox cycle and generating active oxygen species (ROS) such as singlet molecular oxygen atoms (1O2) and superoxide radical (·O2-), resulting in the significant inactivation of Staphylococcus aureus (74.14%) and Escherichia coli (54.87%). Importantly, the CNF@CoMn-NS did not exhibit cytotoxicity. The CNF@CoMn-NS further self-assembled into a CNF@CoMn-NS paper with flexibility, stability, and antibacterial properties, which can effectively protect the wound of two varieties of pears from decay caused by microorganisms. This study demonstrated the potential of using renewable and degradable CNF as substrate combined with artificial enzymes as a promising approach to creating antibacterial materials for food preservation and even extending to textiles and biomedical applications.


Subject(s)
Ananas , Anti-Bacterial Agents , Cellulose , Escherichia coli , Food Preservation , Fruit , Nanofibers , Staphylococcus aureus , Ananas/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Fruit/chemistry , Fruit/microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Nanofibers/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases/genetics , Microbial Sensitivity Tests
7.
Ultrason Sonochem ; 105: 106857, 2024 May.
Article in English | MEDLINE | ID: mdl-38552299

ABSTRACT

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Subject(s)
Ananas , Antioxidants , Fermentation , Plant Extracts , Yogurt , Yogurt/microbiology , Yogurt/analysis , Ananas/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Sonication , Temperature , Hydrogen-Ion Concentration , Food Handling/methods , Food Quality
8.
Chem Biodivers ; 21(5): e202400315, 2024 May.
Article in English | MEDLINE | ID: mdl-38484117

ABSTRACT

Pineapple (Ananas comosus), the succulent and vibrant tropical fruit, is a symbol of exoticism and sweetness that captures the hearts and palates of people around the world. The pineapple peel, often considered as waste, has garnered attention for its potential applications. The pineapple peel is rich in essential nutrients, including calcium, potassium, vitamin C, carbohydrates, dietary fiber, and water, making it beneficial for the digestive system, weight management, and overall balanced nutrition. It contains significant amounts of sugars such as sucrose, glucose, and fructose, along with citric acid as the predominant organic acid. The peel also contains bromelain, a proteolytic enzyme known for its digestive properties. Studies have highlighted the pharmacological properties of pineapple peel, such as its potential anti-parasitic effects, alleviation of constipation, and benefits for individuals with irritable bowel syndrome (IBS). Efforts are being made to promote the utilization of pineapple peel as a valuable resource rather than mere waste. Its applications range from the production of vinegar, alcohol, and citric acid to the development of various food products, including squash, syrup, jelly, and pickles. Further research and innovation are required to fully explore the potential of pineapple peel and establish sustainable practices for its utilization, contributing to waste reduction and the development of value-added products.


Subject(s)
Ananas , Humans , Ananas/chemistry , Fruit/chemistry , Nutritive Value , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ascorbic Acid/chemistry , Potassium/chemistry , Carbohydrates/chemistry
9.
Article in English | MEDLINE | ID: mdl-38320436

ABSTRACT

This study investigated the purification of bromelain obtained from pineapple fruit using a new adsorbent for immobilized metal ion affinity chromatography (IMAC), with chlorophyll obtained from plant leaves as a chelating agent. The purification of bromelain was evaluated in batches from the crude extract of pineapple pulp (EXT), and the extract precipitated with 50 % ammonium sulfate (EXT.PR), the imidazole buffer (200 mM, pH 7.2) being analyzed and sodium acetate buffer, pH 5.0 + 1.0 NaCl as elution solutions. All methods tested could separate forms of bromelain with molecular weights between ±21 to 25 kDa. Although the technique using EXT.PR stood out in terms of purity, presenting a purification factor of around 3.09 ± 0.31 for elution with imidazole and 4.23 ± 0.12 for acetate buffer solution. In contrast, the EXT methods obtained values between 2.44 ± 0.23 and 3.21 ± 0.74 for elution with imidazole and acetate buffer, respectively, for purification from EXT.PR has lower yield values (around 5 %) than EXT (around 15 %). The number of steps tends to reduce yield and increase process costs, so the purification process in a monolithic bed coupled to the chromatographic system using the crude extract was evaluated. The final product obtained had a purification factor of 6, with a specific enzymatic activity of 59.61 ± 0.00 U·mg-1 and a yield of around 39 %, with only one band observed in the SDS-PAGE electrophoresis analysis, indicating that the matrix produced can separate specific proteins from the total fraction in the raw material. The IMAC matrix immobilized with chlorophyll proved promising and viable for application in protease purification processes.


Subject(s)
Ananas , Bromelains , Acetates , Ananas/chemistry , Bromelains/isolation & purification , Chromatography, Affinity/methods , Imidazoles , Plant Extracts/chemistry
10.
Arch Pharm (Weinheim) ; 357(1): e2300422, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37861276

ABSTRACT

Pineapple has been recognized for its potential to enhance health and well-being. This study aimed to gain molecular insights into the anti-inflammatory properties of fermented pineapple juice using multimodal computational studies. In this study, pineapple juice was fermented using Lactobacillus paracasei, and the solution underwent liquid chromatography-mass spectrometry analysis. Network pharmacology was applied to investigate compound interactions and targets. In silico methods assessed compound bioactivities. Protein-protein interactions, network topology, and enrichment analysis identified key compounds. Molecular docking explored compound-receptor interactions in inflammation regulation. Molecular dynamics simulations were conducted to confirm the stability of interactions between the identified crucial compounds and their respective receptors. The study revealed several compounds including short-chain fatty acids, peptides, dihydroxyeicosatrienoic acids, and glycerides that exhibited promising anti-inflammatory properties. Leucyl-leucyl-norleucine and Leu-Leu-Tyr exhibited robust and stable interactions with mitogen-activated protein kinase 14 and IκB kinase ß, respectively, indicating their potential as promising therapeutic agents for inflammation modulation. This proposition is grounded in the pivotal involvement of these two proteins in inflammatory signaling pathways. These findings provide valuable insights into the anti-inflammatory potential of these compounds, serving as a foundation for further experimental validation and exploration. Future studies can build upon these results to advance the development of these compounds as effective anti-inflammatory agents.


Subject(s)
Ananas , Ananas/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Inflammation
11.
J Food Sci ; 88(11): 4403-4423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755601

ABSTRACT

Forward feed multilayered perception and central composite rotatable design were used to model the nonthermal plasma (NTP) experimental data in artificial neural network (ANN) and response surface methodology, respectively. The ANN was found to be more accurate in modeling the experimental dataset. The NTP process parameters (voltage and time) were optimized for pineapple juice within the range of 25-45 kV and 120-900 s using an ANN coupled with the genetic algorithm (ANN-GA). After 176 generations of GA, the ANN-GA approach produced the optimal condition, 38 kV and 631 s, and caused the inactivation of peroxidase (POD) and bromelain by 87.24% and 51.04%, respectively. However, 100.32% of the overall antioxidant capacity and 89.96% of the ascorbic acid were maintained in the optimized sample with a total color change (ΔE) of less than 1.97 at all plasma treatment conditions. Based on optimal conditions, NTP provides a sufficient level of POD inactivation combined with excellent phenolic component extractability and high antioxidant retention. Furthermore, plasma treatment had an insignificant effect (p > 0.05) on the physicochemical attributes (pH, total soluble solid, and titratable acidity) of juice samples. From the intensity peak of the Fourier-transform infrared spectroscopy analysis, it was found that the sugar components and phenolic compounds of plasma-treated juice were effectively preserved compared to the thermal-treated juice.


Subject(s)
Ananas , Antioxidants , Antioxidants/analysis , Ananas/chemistry , Ascorbic Acid/analysis , Fruit and Vegetable Juices/analysis , Phytochemicals
12.
Food Res Int ; 164: 112439, 2023 02.
Article in English | MEDLINE | ID: mdl-36738003

ABSTRACT

Pineapple is among the most produced and consumed fruits worldwide, and consequently, its agroindustrial production/processing generates high amounts of agricultural waste, which are routinely discarded. Thus, it is crucial to seek alternatives to reuse this agricultural waste that are in high availability. Therefore, this work aims to evaluate the chemical composition of a specific residue (leaves) of seven commercial varieties of pineapples, to attribute high added value uses, and to evaluate its potential as a source of secondary metabolites and minerals. Thereby, twenty-eight metabolites were annotated by UPLC-QTOF-MSE, including amino acids, organic acids, and phenolic compounds. The following minerals were quantitatively assessed by ICP-OES: Zn (5.30-19.77 mg kg-1), Cr, Cd, Mn (50.80-113.98 mg kg-1), Cu (1.05-4.01 mg kg-1), P (1030.77-6163.63 mg kg-1) and Fe (9.06-70.17 mg kg-1). In addition, Cr and Cd (toxic materials) present concentration levels below the limit of quantification of the analytical method (LOQCr and LOQCd = 0.02 mg kg-1) for all samples. The multivariate analysis was conceived from the chemical profile, through the tools of PCA (principal component analysis) and HCA (hierarchical cluster analysis). The results show that pineapple leaves have similarities and differences concerning their chemical composition. In addition, the cytotoxicity assays of the extracts against tumor and non-tumor strains shows that the extracts were non-toxic. This fact can corroborate and enhance the prospection of new uses and applications of agroindustrial co-products from pineapple, enabling the evaluation and use in different types of industries, such as pharmacological, cosmetic, and food, in addition to the possibility of being a potential source of bioactive compounds.


Subject(s)
Ananas , Ananas/chemistry , Cadmium , Minerals/metabolism , Phenols/metabolism , Multivariate Analysis
13.
J Agric Food Chem ; 71(9): 4069-4082, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36827381

ABSTRACT

Pineapple (Ananas comosus), one of the most flavorful and popular tropical fruits consumed worldwide, is known to contain many volatile organic compounds (VOCs) at varying concentrations. Much attention has been paid to understand which VOC plays a significant role in the sensory aroma notes of the fruit. Though, nearly 480 VOCs have been identified to date using different analytical techniques, only 40 compounds are reported to contribute to the unique flavor of pineapple. A consolidated database of the reported VOCs and key aroma compounds of pineapple is currently not available. This review discusses the available published data regarding the analytical methodologies, volatile profile of different varieties of pineapple at different maturities, and their characteristic aroma compounds. The output of this review is a subset of key pineapple aroma volatiles that can be targeted in analytical method development for utilization in varietal improvement or other research of pineapple.


Subject(s)
Ananas , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Ananas/chemistry , Volatile Organic Compounds/chemistry , Fruit/chemistry
14.
Chembiochem ; 24(3): e202200463, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36420784

ABSTRACT

The highly glycosylated spike protein of SARS-CoV-2 is essential for infection and constitutes a prime target for antiviral agents and vaccines. The pineapple-derived jacalin-related lectin AcmJRL is present in the medication bromelain in significant quantities and has previously been described to bind mannosides. Here, we performed a large ligand screening of AcmJRL by glycan array analysis, quantified the interaction with carbohydrates and validated high-mannose glycans as preferred ligands. Because the SARS-CoV-2 spike protein was previously reported to carry a high proportion of high-mannose N-glycans, we tested the binding of AcmJRL to the recombinantly produced extraviral domain of spike protein. We could demonstrate that AcmJRL binds the spike protein with a low-micromolar KD in a carbohydrate-dependent fashion.


Subject(s)
Ananas , Lectins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ananas/chemistry , Carbohydrates , Lectins/chemistry , Mannose/chemistry , Polysaccharides/chemistry , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
15.
Sci Rep ; 12(1): 19384, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371484

ABSTRACT

The present study proposes the production of vinegars from pineapple processing residues as an eco-friendly strategy for adding value and economic strengthening of the production chain. Pineapple pulp and peel wines were produced and acetificated to vinegar by wild strains of acetic bacteria using Orlean's method (traditional system) followed by enrichment with leaf extract of Red-Jambo, Syzygium malaccense. Appreciable phenolic contents and antioxidant potential were found in pulp and peel vinegars with the added leaf extract. Catechin, epicatechin and caffeic, p-coumaric, ferulic, and gallic acids were the main phenolic compounds found in peel vinegar. The enrichment of the vinegar with the extract promoted an increase in the content of polyphenols (443.6-337.3 mg GAE/L) and antioxidant activity. Peel wines presented higher luminosity (L*) and higher saturation index (C*), and their color tended more toward yellow than pulp wines. Acetification reduced the saturation index (C*) and led to the intensification of the hue angle in the peels vinegar. Each type of pineapple vinegar produced showed biocidal activity against different bacteria and yeast, and the addition of leaf extract potentiated the antimicrobial activity of peel vinegar, especially against Staphalococcus aureus. The vinegars developed could find an attractive market niche in the food sector.


Subject(s)
Ananas , Syzygium , Wine , Acetic Acid/chemistry , Ananas/chemistry , Wine/analysis , Phenols/chemistry , Antioxidants/chemistry , Saccharomyces cerevisiae , Plant Extracts
16.
Ultrason Sonochem ; 90: 106166, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36215891

ABSTRACT

Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.


Subject(s)
Ananas , Malus , Malus/chemistry , Food Handling/methods , Saccharomyces cerevisiae , Fruit and Vegetable Juices , Microbial Viability/radiation effects , Ananas/chemistry
17.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144767

ABSTRACT

Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg-1 and 4.75 ± 0.23 × 10-3 µM-1 s-1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL-1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.


Subject(s)
Ananas , Cysteine Proteases , Ananas/chemistry , Ananas/genetics , Bromelains/chemistry , Codon/genetics , Glutathione Transferase/genetics , Urea
18.
Nutrients ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893899

ABSTRACT

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of -9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.


Subject(s)
Ananas , Bacteria , Bromelains , SARS-CoV-2 , Ananas/chemistry , Antiviral Agents/pharmacology , Bacteria/drug effects , Bromelains/pharmacology , COVID-19 , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects
19.
Molecules ; 26(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34946738

ABSTRACT

Colitis is not fully curable, although currently, some treatment options are being adopted. In this study, we investigated the effects of pineapple leaf phenols (PLPs), natural phenol products from pineapple leaves, on DSS-induced colitis in mice. The results showed that PLPs dramatically decreased the inflammatory response by inhibiting NF-κB activation and the secretion of pro-inflammatory factors. Moreover, PLPs provided protection against DSS-induced acute colitis by maintaining epithelial integrity. Caffeic and P-coumaric acids had similar effects and could be the active components responsible for PLPs' effect on colitis. These results indicate that the oral administration of PLPs might be considered as a therapeutic strategy in the treatment of patients with colitis. However, further research on clinical applications and the exact effect of PLPs on colitis is required.


Subject(s)
Ananas/chemistry , Caffeic Acids , Colitis , Coumaric Acids , Dextran Sulfate/toxicity , NF-kappa B/metabolism , Plant Leaves/chemistry , Signal Transduction/drug effects , Animals , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Phenols/chemistry , Phenols/pharmacology
20.
Molecules ; 26(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34946765

ABSTRACT

The requirements for analytical tools are changing due to the global production chain, the increasing cases of adulteration, and the growing trend towards consumption of plant-based food products worldwide. The assessment of bioactivity of natural foods is currently not a quality criterion, and a paradigm shift is postulated. A non-targeted effect-directed profiling by high-performance thin-layer chromatography hyphenated with five different effect-directed assays was developed exemplarily for the puree and juice products of mango Mangifera indica L. (Anacardiaceae) and pineapple Ananas comosus (L.) Merr. (Bromeliaceae). Several bioactive compounds were detected in each sample. The additional bioactivity information obtained through effect-directed profiles improves, expands and modernizes product control. Non-target effect-directed profiling adds a new perspective to previous target analysis results that can be used not only to ensure health claims based on bioactive compounds, but also to detect unknown bioactive compounds coming from contamination or residues or changes caused by food processing.


Subject(s)
Ananas/chemistry , Food Analysis , Food Handling , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Mangifera/chemistry , Chromatography, High Pressure Liquid , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...