Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
J Med Virol ; 96(3): e29540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529542

ABSTRACT

The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.


Subject(s)
Androgens , Benzamides , Coronavirus 229E, Human , Nitriles , Phenylthiohydantoin , Male , Female , Humans , Androgens/metabolism , Androgens/pharmacology , Androgen Antagonists/pharmacology , Androgen Antagonists/metabolism , Seasons , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Luciferases
2.
Nat Cell Biol ; 25(12): 1821-1832, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049604

ABSTRACT

Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.


Subject(s)
Monocarboxylic Acid Transporters , Prostate , Male , Humans , Prostate/metabolism , Monocarboxylic Acid Transporters/metabolism , Cell Differentiation/physiology , Epithelial Cells/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/metabolism , Lactates/metabolism
3.
Transl Psychiatry ; 13(1): 307, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788996

ABSTRACT

Advances in prostate cancer treatment have significantly improved survival, but quality of life for survivors remains an under-studied area of research. Androgen deprivation therapy (ADT) is a foundational treatment for advanced prostate cancer and is used as an adjuvant for prolonged periods in many high-risk, localized tumors. More than half of patients treated with ADT experience debilitating cognitive impairments in domains such as spatial learning and working memory. In this study, we investigated the effects of androgen deprivation on hippocampal-mediated cognition in rats. Vortioxetine, a multimodal antidepressant, has been shown to improve cognition in depressed patients. Thus, we also tested the potential efficacy of vortioxetine in restoring impaired cognition after ADT. We further investigated mechanisms that might contribute to these effects, measuring changes in the circuitry and gene expression within the dorsal hippocampus. ADT via surgical castration induced impairments in visuospatial cognition on the novel object location test and attenuated afferent-evoked local field potentials recorded in the CA1 region of the dorsal hippocampus. Chronic dietary administration of vortioxetine effectively reversed these deficits. Castration significantly altered gene expression in the hippocampus, whereas vortioxetine had little effect. Pathway analysis revealed that androgen depletion altered pathways related to synaptic plasticity. These results suggest that the hippocampus may be vulnerable to ADT, contributing to cognitive impairment in prostate cancer patients. Further, vortioxetine may be a candidate to improve cognition in patients who experience cognitive decline after androgen deprivation therapy for prostate cancer and may do so by restoring molecular and circuit-level plasticity-related mechanisms compromised by ADT.


Subject(s)
Cognitive Dysfunction , Prostatic Neoplasms , Humans , Male , Rats , Animals , Vortioxetine/metabolism , Vortioxetine/pharmacology , Androgen Antagonists/adverse effects , Androgen Antagonists/metabolism , Prostatic Neoplasms/drug therapy , Androgens/metabolism , Androgens/pharmacology , Quality of Life , Cognitive Dysfunction/metabolism , Hippocampus/metabolism
4.
J Physiol ; 601(17): 3885-3903, 2023 09.
Article in English | MEDLINE | ID: mdl-37531448

ABSTRACT

In males, the factors that decrease limb muscle mass and strength in response to androgen deprivation are largely unknown. Sirtuin1 (SIRT1) protein levels are lower in the limb muscle of male mice subjected to androgen deprivation. The present study aimed to assess whether SIRT1 induction preserved limb muscle mass and force production in response to androgen deprivation. Physically mature male mice containing an inducible muscle-specific SIRT1 transgene were subjected to a sham or castration surgery and compared to sham and castrated male mice where the SIRT1 transgene was not induced. SIRT1 induction partially preserved whole-body lean mass, tibialis anterior (TA) mass and triceps surae muscle mass in response to castration. Further analysis of the TA muscle showed that muscle-specific SIRT1 induction partially preserved limb muscle soluble protein content and fibre cross-sectional area. Unilateral AAV9-mediated SIRT1 induction in the TA muscle showed that SIRT1 partially preserved mass by acting directly in the muscle. Despite those positive outcomes to limb muscle morphology, muscle-specific SIRT1 induction did not preserve the force generating capacity of the TA or triceps surae muscles. Interestingly, SIRT1 induction in females did not alter limb muscle mass or limb muscle strength even though females have naturally low androgen levels. SIRT1 also did not alter the androgen-mediated increase in limb muscle mass or strength in females. In all, these data suggest that decreases in SIRT1 protein in the limb muscle of males may partially contribute to the loss of limb muscle mass in response to androgen deprivation. KEY POINTS: SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation partially preserved limb muscle mass and fibre cross-sectional area. SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation did not prevent preserve limb muscle force generating capacity. SIRT1 induction in skeletal muscle of females did not alter baseline limb muscle mass, nor did it affect the androgen-mediated increase in limb muscle mass.


Subject(s)
Androgens , Prostatic Neoplasms , Sirtuin 1 , Animals , Male , Mice , Androgen Antagonists/metabolism , Androgens/pharmacology , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Prostatic Neoplasms/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
5.
Drug Test Anal ; 15(7): 757-768, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36922727

ABSTRACT

Nonsteroidal selective androgen receptor modulators (SARMs) are a novel class of compounds that have not yet been clinically approved; however, they appear to have a better anabolic/androgenic ratio than steroids and cause slighter side effects. Sports drug testing laboratories are required to maintain continuously updated doping control analytical methods in light of the widespread misuse of SARMs in elite and amateur sports. This paper describes the metabolic conversion of SARM GSK2881078 in thoroughbred horses following oral administration and in vitro with equine liver microsomes. A liquid chromatography-high-resolution mass spectrometry method was used to postulate the plausible structures of the detected metabolites. A total of five (M1-M5) in vivo metabolites and six (M1-M6) in vitro metabolites were detected under experimental conditions. Phase I metabolites mainly result from hydroxylation. Methoxylated and side-chain dissociated metabolites were also detected. Neither sulfonic acid nor glucuronic acid conjugated metabolites were observed in this study. Data reported here could aid in the detection of nonsteroidal SARM GSK2881078 and reveal its illicit use in competitive sports.


Subject(s)
Anabolic Agents , Doping in Sports , Horses , Animals , Microsomes, Liver/metabolism , Receptors, Androgen/metabolism , Androgens/metabolism , Substance Abuse Detection/methods , Androgen Antagonists/metabolism , Anabolic Agents/metabolism
6.
Prostate ; 83(6): 602-611, 2023 05.
Article in English | MEDLINE | ID: mdl-36794287

ABSTRACT

BACKGROUND: Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans. METHODS: In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer. RESULTS: After multivariate Cox regression analysis and multiple testing correction, we found that ATP8B1 rs7239484 was remarkably associated with CSS and OS after ADT. A pooled analysis of multiple independent gene-expression datasets demonstrated that ATP8B1 was under-expressed in tumor tissues and that a higher ATP8B1 expression was associated with a better patient prognosis. Moreover, we established highly invasive sublines using two human prostate cancer cell lines to mimic cancer progression traits in vitro. The expression of ATP8B1 was consistently downregulated in both highly invasive sublines. CONCLUSION: Our study indicates that rs7239484 is a prognostic factor for patients treated with ADT and that ATP8B1 can potentially attenuate prostate cancer progression.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Prognosis , Prostate/pathology , Androgen Antagonists/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adenosine Triphosphatases/metabolism
7.
Prostate ; 83(7): 641-648, 2023 05.
Article in English | MEDLINE | ID: mdl-36779357

ABSTRACT

BACKGROUND: Amphicrine prostate carcinoma (AMPC) is a poorly defined subset of prostate cancer in which cells co-express luminal prostate epithelial and neuroendocrine markers. The optimal treatment strategy is unknown. We sought to further characterize the clinical, histomorphologic, and molecular characteristics of AMPC and to identify areas of potential future treatment investigations. METHODS: We retrospectively identified 17 cases of AMPC at a single institution, defined as synaptophysin expression in >70% of cells and co-expression of androgen receptor (AR) signaling markers (either AR, PSA, or NKX3.1) in >50% of cells. Clinical and histologic features of AMPC cases as well as response to treatment and clinical outcomes were described. RESULTS: Five AMPC cases arose de novo in the absence of prior systemic treatment and behaved distinctly from cases that were treatment-emergent. In these de novo cases, despite expression of neuroendocrine markers, prognosis appeared more favorable than high-grade neuroendocrine carcinoma, with two (40%) patients with de novo metastatic disease, universal response to androgen deprivation therapy, and no deaths at a median follow-up of 12.3 months. Treatment-emergent AMPC arose a median of 41.1 months after androgen deprivation therapy initiation and was associated with poor response to therapy. CONCLUSIONS: We show that amphicrine prostate cancer is a unique entity and differs in clinical and molecular features from high-grade neuroendocrine carcinomas of the prostate. Our study highlights the need to recognize AMPC as a unique molecularly defined subgroup of prostate cancer.


Subject(s)
Carcinoma, Neuroendocrine , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Retrospective Studies , Androgen Antagonists/therapeutic use , Androgen Antagonists/metabolism , Androgens/metabolism , Prostate/pathology , Carcinoma, Neuroendocrine/pathology , Prostatic Neoplasms, Castration-Resistant/pathology
8.
J Microbiol Immunol Infect ; 56(2): 246-256, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36639348

ABSTRACT

Prostate cancer (PCa) is one of the most common malignancies in men; recently, PCa-related mortality has increased worldwide. Although androgen deprivation therapy (ADT) is the standard treatment for PCa, patients often develop aggressive castration-resistant PCa (CRPC), indicating the presence of an alternative source of androgen. Clostridium scindens is a member of the gut microbiota and can convert cortisol to 11ß-hydroxyandrostenedione (11ß-OHA), which is a potent androgen precursor. However, the effect of C. scindens on PCa progression has not been determined. In this study, androgen-dependent PCa cells (LNCaP) were employed to investigate whether C. scindens-derived metabolites activate androgen receptor (AR), which is a pivotal step in the development of PCa. Results showed that cortisol metabolites derived from C. scindens-conditioned medium promoted proliferation and enhanced migration of PCa cells. Furthermore, cells treated with these metabolites presented activated AR and stimulated AR-regulated genes. These findings reveal that C. scindens has the potential to promote PCa progression via the activation of AR signaling. Further studies on the gut-prostate axis may help unravel an alternative source of androgen that triggers CRPC exacerbation.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostate/metabolism , Androgens/metabolism , Androgens/pharmacology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgen Antagonists/metabolism , Androgen Antagonists/pharmacology , Hydrocortisone/metabolism , Hydrocortisone/pharmacology , Cell Line, Tumor
9.
J Vasc Res ; 59(6): 358-368, 2022.
Article in English | MEDLINE | ID: mdl-36412620

ABSTRACT

OBJECTIVE: Follicle-stimulating hormone (FSH) level changes may be another reason for increasing the risk of cardiovascular disease. In this study, we aimed to investigate the role of FSH in atherosclerosis and its underlying mechanism. METHODS: ApoE-/- mice were divided into 4 groups, namely, the sham group, bilaterally orchidectomized group, FSH group, and testosterone-only group. Blood lipid and hormone levels were tested, aorta Oil Red O staining; the levels of NF-κB, Akt, eNOS, and FSH receptors in the aorta were measured by Western blotting. Expression of VCAM-1 was detected via Western blotting and immunohistochemical staining. Human umbilical vein endothelial cells (HUVECs) were used to induce endothelial injury model by adding FSH, and the levels of NF-κB, Akt, eNOS, and FSHR were tested in HUVECs. RESULTS: FSH treatment exacerbated atherosclerotic lesions in ApoE-/- mice. Moreover, FSH could promote the expression of VCAM-1 protein in HUVECs, and this effect was possibly mediated by the activation of NF-κB, while NF-κB activation was further enhanced by the activation of the PI3K/Akt/eNOS pathway. FSH failed to activate Akt and NF-κB in the presence of the PI3K inhibitor LY294002 in HUVECs. CONCLUSION: FSH promoted the development of atherosclerosis by increasing VCAM-1 protein expression via activating PI3K/Akt/NF-κB pathway.


Subject(s)
Atherosclerosis , Prostatic Neoplasms , Male , Mice , Humans , Animals , NF-kappa B/metabolism , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Androgens/metabolism , Androgens/pharmacology , Androgen Antagonists/metabolism , Androgen Antagonists/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Knockout, ApoE , Prostatic Neoplasms/metabolism , Atherosclerosis/metabolism , Human Umbilical Vein Endothelial Cells , Apolipoproteins E/genetics
10.
PLoS Pathog ; 18(10): e1010913, 2022 10.
Article in English | MEDLINE | ID: mdl-36282845

ABSTRACT

Utilization of specialized Th1 cells to resist intracellular pathogenic infection represents an important innovation of adaptive immunity. Although transcriptional evidence indicates the potential presence of Th1-like cells in some fish species, the existence of CD3+CD4+IFN-γ+ T cells, their detailed functions, and the mechanism determining their differentiation in these early vertebrates remain unclear. In the present study, we identified a population of CD3+CD4-1+IFN-γ+ (Th1) cells in Nile tilapia upon T-cell activation in vitro or Edwardsiella piscicida infection in vivo. By depleting CD4-1+ T cells or blocking IFN-γ, Th1 cells and their produced IFN-γ were found to be essential for tilapia to activate macrophages and resist the E. piscicida infection. Mechanistically, activated T cells of tilapia produce IL-2, which enhances the STAT5 and mTORC1 signaling that in turn trigger the STAT1/T-bet axis-controlled IFN-γ transcription and Th1 cell development. Additionally, mTORC1 regulates the differentiation of these cells by promoting the proliferation of CD3+CD4-1+ T cells. Moreover, IFN-γ binds to its receptors IFNγR1 and IFNγR2 and further initiates a STAT1/T-bet axis-mediated positive feedback loop to stabilize the Th1 cell polarization in tilapia. These findings demonstrate that, prior to the emergence of tetrapods, the bony fish Nile tilapia had already evolved Th1 cells to fight intracellular bacterial infection, and support the notion that IL-2-mTORC1 signaling coordinates the STAT1/T-bet axis to determine Th1 cell fate, which is an ancient mechanism that has been programmed early during vertebrate evolution. Our study is expected to provide novel perspectives into the evolution of adaptive immunity.


Subject(s)
Antimutagenic Agents , Th1 Cells , Animals , STAT5 Transcription Factor/metabolism , Antimutagenic Agents/metabolism , Interleukin-2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Interleukin-12/metabolism , Trans-Activators/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Cell Differentiation , Lymphocyte Activation , Androgen Antagonists/metabolism , CD4-Positive T-Lymphocytes
11.
Front Biosci (Landmark Ed) ; 27(9): 256, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36224011

ABSTRACT

BACKGROUND: Castration-resistant prostate cancer (PCa; CRPC) has a poor response to androgen deprivation therapy and is considered an incurable disease. MicroRNA (miR)-lethal 7c (let-7c) was implied to be a tumor suppressor in PCa, and treatment with exogenous let-7c targets both cancer cells and their associated mesenchymal stem cells (MSCs) to prevent CRPC progression and metastasis. Exosomes are nanometer-sized membrane-bound vesicles which have an absolute predominance in biocompatibility for drug delivery and gene therapy by mediating cell-to-cell communication. By utilizing the intrinsic tumor-targeting property of MSCs, this study aimed to investigate the feasibility of MSC-derived exosomes as an exogenous miR delivery system to target CRPC, using miR let-7c as an example. METHODS: Bioinformatics analysis was performed to observe miR-let-7c expression in clinical samples by utilizing the GEO database. MSC-derived exosomes were collected from a human bone marrow-derived MSC cell line after cell transfection with either a pre-miR negative control or pre-miR-let-7c, and further characterized through nanoparticle tracking analysis and Western blotting. miR-let-7c expression was determined using RT-qPCR, and the phenotypic effects of both naked and MSC-exosome-encapsulated let-7c on CRPC cells (PC3 and CWR22Rv1) were determined by WST-1 cell proliferation assay and wound healing migration assay. RESULTS: miR-let-7c was downregulated in metastatic PCa and high grade group patients. miR-let-7c expression was confirmed to be downregulated in PCa cell lines, with massively decreased in most metastatic CRPC-like cells. Exogenous miR-let-7c can be successfully packaged into MSC exosomes. Treatment with either naked or MSC-exosome-encapsulated miR-let-7c resulted in significant reductions in cell proliferation and migration in CRPC-like PC3 and CWR22Rv1 cells. CONCLUSIONS: MSC-derived exosomes could serve as a therapeutic let-7c delivery system to target CRPC.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs/genetics , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/metabolism , Androgens/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Exosomes/genetics , Exosomes/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/therapy
12.
Prostate ; 82(1): 13-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34570375

ABSTRACT

INTRODUCTION: Androgen deprivation therapy (ADT) is a key treatment modality in the management of prostate cancer (PCa), especially for patients with metastatic disease. Increasing evidences suggest that patients who received ADT have increased incidence of diabetes, myocardial infarction, stroke, and even mortality. It is important to understand the pathophysiological mechanisms on how ADT increases cardiovascular risk and induces cardiovascular events, which would provide important information for potential implementation of preventive measures. METHODS: Twenty-six 12-week-old male SD rats were divided into four groups for different types of ADTs including: the bilateral orchidectomy group (Orx), LHRH agonist group (leuprolide), LHRH antagonist group (degarelix), and control group. After treated with drug or adjuvant injection every 3 weeks for 24 weeks, all rats were sacrificed and total blood were collected. Aorta, renal arteries, and kidney were preserved for functional assay, immunohistochemistry, western blot, and quantitative reverse-transcription polymerase chain reaction. RESULTS: In vascular reactivity assays, aorta, intrarenal, and coronary arteries of all three ADT groups showed endothelial dysfunction. AT1R and related molecules at protein and messenger RNA (mRNA) level were tested, and AT1R pathway was shown to be activated and played a role in endothelial dysfunction. Both ACE and AT1R mRNA levels were doubled in the aorta in the leuprolide group while Orx and degarelix groups showed upregulation of AT1R in the kidney tissues. By immunohistochemistry, our result showed higher expression of AT1R in the intrarenal arteries of leuprolide and degarelix groups. The role of reactive oxygen species in endothelial dysfunction was confirmed by DHE fluorescence, nitrotyrosine overexpression, and upregulation of NOX2 in the different ADT treatment groups. CONCLUSION: ADT causes endothelial dysfunction in male rats. GnRH receptor agonist compared to GnRH receptor antagonist, showed more impairment of endothelial function in the aorta and intrarenal arteries. Such change might be associated with upregulation and activation of AngII-AT1R-NOX2 induced oxidative stress in the vasculature. These results help to explain the different cardiovascular risks and outcomes related to different modalities of ADT treatment.


Subject(s)
Androgen Antagonists , Arteries , Endothelium, Vascular , Leuprolide , Oligopeptides , Orchiectomy/methods , Androgen Antagonists/adverse effects , Androgen Antagonists/analysis , Androgen Antagonists/metabolism , Animals , Arteries/drug effects , Arteries/metabolism , Arteries/pathology , Correlation of Data , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Heart Disease Risk Factors , Immunohistochemistry , Leuprolide/administration & dosage , Leuprolide/adverse effects , Oligopeptides/administration & dosage , Oligopeptides/adverse effects , Rats , Reactive Oxygen Species/analysis , Receptor, Angiotensin, Type 1/analysis , Receptor, Angiotensin, Type 1/metabolism
13.
Cell Signal ; 87: 110126, 2021 11.
Article in English | MEDLINE | ID: mdl-34474113

ABSTRACT

The progression to a castration-resistant prostate cancer can occur after treatment with androgen deprivation therapy, resulting in poor prognosis and ineffective therapy response. Hormone dependence transition has been associated with increased tumor vascularization. Considering that exosomes are important components in communication between tumor cells and the microenvironment, we examined the angiogenic potential of exosomes released from Pca cell lines with distinctive profiles of androgen response through exosomes isolation, microscopy and uptake, functional assays follow up by microarray, RT-qPCR and bioinformatics analysis. HUVEC cells treated with PC-3 exosomes (androgen independent) showed increased invasion and tube formation ability. In order to identify microRNAs (miRNAs) related to the angiogenic response, the characterization of exosomal miRNA profile was performed. As result we suggest that the miR-27a-3p could be involved in the pro-angiogenic effect of PC-3 exosomes.


Subject(s)
Exosomes , MicroRNAs , Prostatic Neoplasms , Androgen Antagonists/metabolism , Cell Line, Tumor , Exosomes/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/pathology , Tumor Microenvironment
14.
Chembiochem ; 22(13): 2335-2344, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33950564

ABSTRACT

Polycomb group (PcG) proteins are epigenetic regulators that facilitate both embryonic development and cancer progression. PcG proteins form Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). PRC2 trimethylates histone H3 lysine 27 (H3K27me3), a histone mark recognized by the N-terminal chromodomain (ChD) of the CBX subunit of canonical PRC1. There are five PcG CBX paralogs in humans. CBX2 in particular is upregulated in a variety of cancers, particularly in advanced prostate cancers. Using CBX2 inhibitors to understand and target CBX2 in prostate cancer is highly desirable; however, high structural similarity among the CBX ChDs has been challenging for developing selective CBX ChD inhibitors. Here, we utilize selections of focused DNA encoded libraries (DELs) for the discovery of a selective CBX2 chromodomain probe, SW2_152F. SW2_152F binds to CBX2 ChD with a Kd of 80 nM and displays 24-1000-fold selectivity for CBX2 ChD over other CBX paralogs in vitro. SW2_152F is cell permeable, selectively inhibits CBX2 chromatin binding in cells, and blocks neuroendocrine differentiation of prostate cancer cell lines in response to androgen deprivation.


Subject(s)
Carcinoma, Neuroendocrine/metabolism , Gene Expression Regulation, Neoplastic/genetics , Polycomb Repressive Complex 1/chemistry , Polycomb-Group Proteins/metabolism , Prostatic Neoplasms/metabolism , Small Molecule Libraries/chemistry , Amino Acid Sequence , Androgen Antagonists/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Membrane Permeability , Histones/metabolism , Humans , Ligands , Male , Polycomb Repressive Complex 1/genetics , Protein Binding , Small Molecule Libraries/metabolism
15.
Chem Biol Drug Des ; 98(1): 60-72, 2021 07.
Article in English | MEDLINE | ID: mdl-33905591

ABSTRACT

Androgen receptor (AR) is an important target for the treatment of prostate cancer, and mutations in the AR have an important impact on the resistance of existing drugs. In this work, we performed molecular dynamics simulations of the existing marketed antiandrogens flutamide, nilutamide, bicalutamide, enzalutamide, apalutamide, darolutamide, and its main metabolite ORM15341 in complex with the wild-type and F876L mutant AR. We calculated the residue-specific binding free energy contribution of the wild-type and mutant ARs with the AS-IE method and analyzed the hotspot residues and the binding free energy contributions of specific residues before and after the mutation. In addition, we analyzed the total binding obtained by adding residue binding energy contributions and compared the results with experimental values. The obtained residue-specific binding information should be very helpful in understanding the mechanism of drug resistance with respect to specific mutations and in the design of new generation drugs against possible new mutations.


Subject(s)
Androgen Antagonists/metabolism , Androgen Receptor Antagonists/chemistry , Biomarkers, Tumor/metabolism , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/metabolism , Flutamide/chemistry , Humans , Imidazolidines/chemistry , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Phenylthiohydantoin/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship , Thermodynamics , Thiohydantoins/chemistry
16.
Dev Biol ; 473: 50-58, 2021 05.
Article in English | MEDLINE | ID: mdl-33529704

ABSTRACT

The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.


Subject(s)
Prostate/metabolism , Prostate/pathology , Stem Cells/metabolism , Androgen Antagonists/metabolism , Androgens/metabolism , Animals , Cell Differentiation , Epithelial Cells/metabolism , Humans , Male , Organogenesis , Prostate/embryology , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/metabolism
17.
Toxicol Appl Pharmacol ; 413: 115407, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33434571

ABSTRACT

Endocrine disrupting compounds (EDCs) are ubiquitous environmental pollutants that alter endocrine system function, induce birth defects, and a myriad of other negative health outcomes. Although the mechanism of toxicity of many EDCs have been studied in detail, little work has focused on understanding the mechanisms through which pregnant dams and fetuses protect themselves from EDCs, or if those protective mechanisms are sexually dimorphic in fetuses. In this study, we examined proteomic alterations in the livers of mouse dams and their male and female fetuses induced by vinclozolin, a model antiandrogenic EDC. Dam livers upregulated nine phase I and phase II detoxification pathways and pathway analysis revealed that more pathways are significantly enriched in dam livers than in fetal livers. Phase I and II detoxification proteins are also involved in steroid and steroid hormone biosynthesis and vinclozolin likely alters steroid levels in both the dam and the fetus. The response of the fetal liver proteome to vinclozolin exposure is sexually dimorphic. Female fetal livers upregulated proteins in xenobiotic metabolism pathways, whereas male fetal livers upregulated proteins in oxidative phosphorylation pathways. These results suggest that female fetuses increase protective mechanisms, whereas male fetuses increase ATP production and several disease pathways that are indicative of oxidative damage. Females fetuses upregulate proteins and protective pathways that were similar to the dams whereas males did not. If this sexually dimorphic pattern is typical, then males might generally be more sensitive to EDCs.


Subject(s)
Androgen Antagonists/toxicity , Endocrine Disruptors/toxicity , Liver/drug effects , Oxazoles/toxicity , Proteome , Adenosine Triphosphate/metabolism , Androgen Antagonists/metabolism , Animals , Endocrine Disruptors/metabolism , Female , Liver/embryology , Liver/metabolism , Male , Maternal Exposure , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Mice , Oxazoles/metabolism , Oxidative Phosphorylation , Pregnancy , Proteomics , Sex Characteristics , Sex Factors
18.
Eur J Med Chem ; 209: 112904, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33077264

ABSTRACT

Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.


Subject(s)
Antineoplastic Agents/chemistry , Histone Deacetylase Inhibitors/chemistry , Androgen Antagonists/metabolism , Animals , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Daunorubicin/chemistry , Daunorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Molecular Targeted Therapy , Morpholines/chemistry , Morpholines/pharmacology , Nicotinamide Phosphoribosyltransferase/metabolism , Nitric Oxide/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Structure-Activity Relationship , Transcription Factors/metabolism , fms-Like Tyrosine Kinase 3/metabolism
19.
Proc Natl Acad Sci U S A ; 117(42): 26347-26355, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020300

ABSTRACT

Loss of the tumor suppressor, PTEN, is one of the most common findings in prostate cancer (PCa). This loss leads to overactive Akt signaling, which is correlated with increased metastasis and androgen independence. However, another tumor suppressor, inositol-polyphosphate 4-phosphatase type II (INPP4B), can partially compensate for the loss of PTEN. INPP4B is up-regulated by androgens, and this suggests that androgen-deprivation therapy (ADT) would lead to hyperactivity of AKT. However, in the present study, we found that in PCa, samples from men treated with ADT, ERß, and INPP4B expression were maintained in some samples. To investigate the role of ERß1 in regulation of INPPB, we engineered the highly metastatic PCa cell line, PC3, to express ERß1. In these cells, INPP4B was induced by ERß ligands, and this induction was accompanied by inhibition of Akt activity and reduction in cell migration. These findings reveal that, in the absence of androgens, ERß1 induces INPP4B to dampen AKT signaling. Since the endogenous ERß ligand, 3ß-Adiol, is lost upon long-term ADT, to obtain the beneficial effects of ERß1 on AKT signaling, an ERß agonist should be added along with ADT.


Subject(s)
Estrogen Receptor beta/metabolism , Phosphoric Monoester Hydrolases/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Androgen Antagonists/metabolism , Androgens/pharmacology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Humans , Male , PC-3 Cells , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction
20.
Prostate ; 80(9): 674-686, 2020 06.
Article in English | MEDLINE | ID: mdl-32294305

ABSTRACT

BACKGROUND: Castrate-resistant prostate cancer (CRPC) is an aggressive and lethal disease. The pathogenesis of CRPC is not fully understood and novel therapeutic targets need to be identified to improve the patients' prognosis. MicroRNA-30a (miR-30a) has been demonstrated to be a tumor suppressor in many types of solid malignancies. However, its role in androgen-independent (AI) growth of prostate cancer (PCa) received limited attention as yet. METHODS: The clinical association of miR-30a and its potential targets with AI growth was characterized by bioinformatics analyses. Regulation of cell proliferation and colony formation rates by miR-30a were tested using PCa cell models. Xenograft models were used to measure the regulation of prostate tumor growth by miR-30a. The real-time quantitative polymerase chain reaction was used to validate whether miR-30a and its targets regulate cell cycle control genes and androgen receptor (AR)-dependent transcription. Bioinformatics tools, Western blot, and luciferase reporter assays were utilized to identify miR-30a targets. RESULTS: Bioinformatic analysis showed that low expression of miR-30a is associated with castration resistance of PCa patients and poor outcomes. Transfection of miR-30a mimics inhibited the AI growth of PCa cells in vitro and in vivo. Upregulation of miR-30a in 22RV1 cells altered the expression of cell cycle control genes and AR-mediated transcription, while downregulation of miR-30a in LNCaP cells had the opposite effects to AR-mediated transcription. MYBL2, FOXD1, and SOX4 were identified as miR-30a targets. Downregulation of MYBL2, FOXD1, and SOX4 affected the expression of cell cycle control genes and AR-mediated transcription and suppressed the AI growth of 22RV1 cells. CONCLUSIONS: Our results suggest that miR-30a inhibits AI growth of PCa by targeting MYBL2, FOXD1, and SOX4. They provide novel insights into developing new treatment strategies for CRPC.


Subject(s)
Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , SOXC Transcription Factors/metabolism , Trans-Activators/metabolism , Androgen Antagonists/metabolism , Androgens/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Growth Processes/physiology , Cell Line, Tumor , Down-Regulation , Forkhead Transcription Factors/genetics , HEK293 Cells , Heterografts , Humans , Male , Mice , Mice, Nude , MicroRNAs/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/metabolism , SOXC Transcription Factors/genetics , Trans-Activators/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...