Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
Int Immunopharmacol ; 132: 111866, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603854

ABSTRACT

OBJECTIVE: Nasopharyngeal carcinoma (NPC) remains a challenging cancer to treat. This study investigates the molecular mechanisms of Hedyotis diffusa Willd (HDW) combined with Andrographis paniculata (AP) in treating NPC. METHODS: Key compounds and target genes in HDW and AP were analyzed using network pharmacology. Protein-protein interaction (PPI) networks were constructed with STRING and visualized using Cytoscape. MCODE identified critical clusters, while DAVID facilitated GO and KEGG analyses. In vivo and in vitro experiments evaluated HDW-AP effects on NPC, including tumor volume, weight, Ki-67 expression, cell apoptosis, migration, invasion, cell cycle distribution, and DNA damage. RESULTS: The database identified 495 NPC-related genes and 26 compounds in the HDW-AP pair, targeting 165 genes. Fifty-eight potential therapeutic genes were found, leading to 18 key targets. KEGG analysis revealed a significant impact on 78 pathways, especially cancer pathways. Both in vivo and in vitro tests showed HDW-AP inhibited NPC cell proliferation, migration, invasion, and induced apoptosis. Mechanistically, this was achieved through AKT1 downregulation and VEGFA upregulation. CONCLUSION: The combination of HDW and AP targets 16 key genes to impede the development of NPC, primarily by modulating AKT1 and VEGFA pathways.


Subject(s)
Hedyotis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Proto-Oncogene Proteins c-akt/metabolism , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Animals , Cell Line, Tumor , Mice, Nude , Apoptosis/drug effects , Mice , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays , Andrographis/chemistry , Cell Proliferation/drug effects , Up-Regulation/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Drug Synergism , Protein Interaction Maps , Carcinogenesis/drug effects , Andrographis paniculata , Down-Regulation , Male
2.
J Ethnopharmacol ; 331: 118241, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38670400

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Andrographis paniculata (AP) ((Burm f.) Wall. ex Nees) is a medicinal plant, documented for its folkloric use in the treatment of malaria. AIM: This study was designed to determine the potency of extract and fractions of A. paniculata (AP) as a curative, both for susceptible and resistant malaria and to also determine the plant's mechanism of action. This study was also designed to determine whether AP extract and its most potent fraction will mitigate infection-mediated mitochondrial dysfunction, and to assess the phytochemical constituents of the most potent fraction. MATERIALS AND METHODS: n-Hexane, dichloromethane, ethylacetate and methanol were used to partition the methanol extract of A. paniculata. Graded doses of these extract and fractions were used to treat mice infected with chloroquine-sensitive strain of P. berghei in a curative model. The most potent fraction was used to treat mice infected with resistant (ANKA strain) P. berghei. Inhibition of hemozoin formation, reversal of mitochondrial dysfunction and antiinflammatory potentials were determined. A combination of ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry and nuclear magnetic resonance spectroscopy were used for chemical analysis. RESULTS: Microscopy revealed that the dichloromethane fraction decreased the parasite burden the most, and inhibition of the hemozoin formation is one of its mechanisms of action. The dichloromethane fraction reversed parasite-induced mitochondrial pore opening in the host, enzyme-dependent ATP hydrolysis and peroxidation of host mitochondrial membrane phospholipids as well as its antiinflammatory potentials. The UPLC-qTOF-MS report and NMR fingerprints of the dichloromethane fraction of A. paniculata yielded fourteen compounds of which sibiricinone C was identified from the plant for the first time. CONCLUSION: Fractions of A. paniculata possess antiplasmodial effects with the dichloromethane fraction having the highest potency. The potent effect of this fraction may be attributed to the phytochemicals present because it contains terpenes implicated with antimalarial and antiinflammatory activities.


Subject(s)
Andrographis , Antimalarials , Malaria , Plant Extracts , Plasmodium berghei , Animals , Plasmodium berghei/drug effects , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Andrographis/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Hemeproteins/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Female
3.
Biomed Pharmacother ; 174: 116456, 2024 May.
Article in English | MEDLINE | ID: mdl-38552441

ABSTRACT

Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Bronchoalveolar Lavage Fluid , Diterpenes , Poly I-C , Animals , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Male , Mice , Andrographis/chemistry , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Leukocyte Elastase/metabolism
4.
J Ethnopharmacol ; 329: 118001, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38467318

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In 2020, liver cancer contributed to approximately 0.9 million new cases and 0.83 million deaths, making it the third leading cause of mortality worldwide. Andrographis paniculata (Burm.f.) Nees(APN), a traditional Chinese or ethnic medicine extensively utilized in Asia, has been historically employed for treating hepatitis and liver cancer. However, the precise molecular mechanism responsible for its therapeutic efficacy remains unclear. AIM OF THE STUDY: To identify and replace the active components of APN on liver cancer, which is investigate the potential of a Multi-Component Chinese Medicine derived from Andrographis paniculata (Burm.f.) Nees(APN-MCCN) for the treatment of liver cancer. MATERIALS AND METHODS: Firstly, the TCMSP database and two liver cancer disease databases were utilized to optimize the chemical constituents of APN and the disease-related targets of liver cancer. The network was constructed using Cytoscape to visualize the relationships between them. Subsequently, the optimal combination of components in APN-MCCN for the treatment of liver cancer was determined using the contribution index method. HPLC analysis was performed to measure the content of each component. Pathway enrichment and gene annotation were conducted using the ClueGo plugin. In vivo efficacy was evaluated by transplanting S180 and H22 tumor-bearing mouse models. In vitro efficacy was determined through MTT assay, morphological observations, flow cytometry analysis, and scratch tests. Western blotting was used to validate the protein expression. The transfection techniques were employed to knockdown the expressions of key protein in different pathway. RESULTS: We obtained 24 effective compounds, with andrographolide contributing 20.78%, wogonin contributing 41.85%, and oroxylin A contributing 30.26% to the overall composition. Based on the predicted enrichment degree and correlation with liver cancer, we identified a total of 27 pathways, among which the Leptin signaling pathway, AGE-RAGE signaling pathway, and Cell Cycle signaling pathway were selected for further investigation. The content of andrographolide, oroxylin A, and wogonin in APN was found to be 0.104%, 0.0024%, and 0.0052%, respectively. In vivo experiments demonstrated that APN-MCCM significantly reduced tumor weight in S180 tumor-bearing mice and prolonged the survival time of H22 liver cancer-bearing mice. APN-MCCM exhibited inhibitory effects on the proliferation, apoptosis, and migration of liver cancer cells while arresting them in the G2/M phase. Furthermore, APN-MCCM down-regulated the protein expression of NCOA1, PTPN1, and GSK3B in the Leptin signaling pathway, NOS2 and NOS3 in the AGE-RAGE signaling pathway, CCNA2, CDK1, CDK2, and CDK7 in the Cell Cycle signaling pathway. Additionally, it upregulated the protein phosphorylation of p-P38 and p-JUN in the AGE-RAGE signaling pathway. Knockout experiments revealed that the inhibitory effect of APN-MCCM on liver cancer cell migration was prevented when the MAPK or NCOA1 genes were knocked out. Similarly, knocking out the CDK7 gene blocked the G2/M phase arrest induced by APN-MCCM in liver cancer cells. CONCLUSIONS: APN-MCCM, consisting of andrographolide, wogonin, and oroxylin A, exhibits inhibitory effects on the cell proliferation of liver cancer cells by targeting the cell cycle pathway. Additionally, it suppresses the migration of liver cancer cells through the AGE-RAGE and Leptin signaling pathways.


Subject(s)
Andrographis , Carcinoma, Hepatocellular , Cell Cycle , Cell Proliferation , Diterpenes , Flavonoids , Leptin , Liver Neoplasms , Signal Transduction , Animals , Cell Proliferation/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Diterpenes/pharmacology , Diterpenes/isolation & purification , Humans , Signal Transduction/drug effects , Andrographis/chemistry , Mice , Cell Cycle/drug effects , Flavonoids/pharmacology , Flavonoids/isolation & purification , Leptin/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/isolation & purification , Male , Cell Line, Tumor , Hep G2 Cells , Mice, Nude , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Flavanones
5.
Pharm Biol ; 62(1): 183-194, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38351624

ABSTRACT

CONTEXT: The therapeutic potential of andrographolide is hindered by its poor oral bioavailability and unpredictable pharmacokinetics, primarily due to its limited water solubility. OBJECTIVE: This work aimed to enhance the solubility and pharmacokinetics of andrographolide, a bioactive compound in Andrographis paniculata (Burm. f.) Nees (Acanthaceae), using solubilizing agents and a bioenhancer. MATERIALS AND METHODS: Four groups of beagles were compared: (1) A. paniculata powder alone (control), (2) A. paniculata powder with 50% weight/weight (w/w) ß-cyclodextrin solubilizer, (3) A. paniculata powder with 1% w/w sodium dodecyl sulfate (SDS) solubilizer, and (4) A. paniculata powder co-administered with 1% w/w SDS solubilizer and 10% piperine bioenhancer. All groups received a consistent oral dose of 3 mg/kg of andrographolide, administered both as a single dose and multiple doses over seven consecutive days. RESULTS: Thirteen chemical compounds were identified in A. paniculata powder, including 7 diterpenoids, 5 flavonoids, and 1 phenolic compound. A. paniculata co-administration with either 50% w/w ß-cyclodextrin or 1% w/w SDS, alone or in combination with 10% w/w piperine, significantly increased systemic andrographolide exposure by enhancing bioavailability (131.01% to 196.05%) following single and multiple oral co-administration. Glucuronidation is one possible biotransformation pathway for andrographolide, as evidenced by the excretion of glucuronide conjugates in urine and feces. CONCLUSION: The combination of solubilizing agents and a bioenhancer improved the oral bioavailability and pharmacokinetics of andrographolide, indicating potential implications for A. paniculata formulations and clinical therapeutic benefits. Further investigation in clinical studies is warranted.


Subject(s)
Alkaloids , Andrographis , Benzodioxoles , Diterpenes , Piperidines , Polyunsaturated Alkamides , beta-Cyclodextrins , Animals , Dogs , Andrographis paniculata , Biological Availability , Bioenhancers , Powders , Andrographis/chemistry , Plant Extracts , Excipients
6.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398604

ABSTRACT

Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.


Subject(s)
Andrographis , Diterpenes , Terpenes/metabolism , Transcriptome , Andrographis/genetics , Andrographis/chemistry , Flavonoids/metabolism , Molecular Docking Simulation , Diterpenes/chemistry , Lactones/metabolism , Antiviral Agents/metabolism
7.
Phytochemistry ; 219: 113986, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219853

ABSTRACT

The plant Andrographis paniculata has a long history of cultivation in Southeast Asia, especially its extensive anti-inflammatory activity, and the famous natural antibiotic andrographolide comes from this plant. In China, A. paniculata, as the main crop, has become a major source of traditional Chinese medicine (TCM) for the clinical treatment of inflammation. To further explore the diverse diterpene lactones with better anti-inflammatory activity from A. paniculata, twenty-one ent-labdanes, including six undescribed compounds (andropanilides D-I), were isolated. Their structures with absolute configurations were thoroughly determined by comprehensive NMR spectroscopic data, HRESIMS analysis and quantum chemical calculations. All isolated compounds were evaluated for anti-inflammatory activities based on the Griess method. Meanwhile, after structure-activity relationships analysis, the anti-inflammatory activity of andropanilide D (1) (IC50 = 2.31 µM) was found to be better than that of the positive control drug (dexamethasone, IC50 = 6.52 µM) and andrographolide (IC50 = 5.89 µM). Further mechanisms of activity indicated that andropanilide D significantly reduced the secretion of TNF-α, IL-6 and IL-1ß and downregulated the protein expression of COX-2 and iNOS in LPS-induced RAW264.7 macrophages in a concentration-dependent manner based on Western blot and ELISA experiments. In conclusion, andropanilide D possesses potential medicinal value for the treatment of inflammation and further expands the material basis of the anti-inflammatory effect of A. paniculata.


Subject(s)
Andrographis , Diterpenes , Andrographis paniculata , Andrographis/chemistry , Andrographis/metabolism , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Diterpenes/chemistry , Inflammation
8.
Ann Pharm Fr ; 82(1): 15-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37813330

ABSTRACT

Andrographispaniculata (kalmegh) is also known as "king of bitters", is an herbaceous plant belongs to family Acanthaceae. The therapeutic effect is due to presence of diterpenoid lactone derivatives of A. paniculata mainly andrographolide. The main purpose of this review includes detailed (past and present) study of A. paniculata and its most important component andrographolide a diterpenoid lactone with respect to its botany, phytochemistry, molecular docking analysis and pharmacological effects i.e., therapeutic benefits. In reference to the search, we also compiled variety of dosage forms available, which are made up of A. paniculata extract and Andrographolide such as tablets and capsules. This review also discusses reported methods of extraction of phytoconstituents, pharmacokinetics of main components, their molecular docking analysis data and main therapeutic applications with their proposed mechanism of actions in various diseases. According to data collected, A. paniculata is becoming more and more valuable as a therapeutic herb.


Subject(s)
Andrographis , Botany , Diterpenes , Andrographis paniculata , Molecular Docking Simulation , Andrographis/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/analysis , Lactones
9.
Environ Res ; 242: 117764, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38029820

ABSTRACT

An in-vitro investigation was performed to evaluate and compare the phytochemical, antioxidant, antidiabetic, anti-inflammatory, and anti-lung cancer activities of methanol extracts of aerial parts of Andrographis paniculata and Trianthema portulacastrum. Furthermore studied major functional groups of phytochemicals present in the methanol extracts of these plants through Fourier transform infrared (FTIR) analysis. The results showed that the methanol extract of A. paniculata contain more number of pharmaceutically valuable phytochemicals such as alkaloids, flavonoids, terpenoids, saponin, glycoside, phytosterol, and tannin than T. portulacastrum. Similar way the methanol extract of A. paniculata showed considerable dose dependent antioxidant (DPPH: 63%), antidiabetic (α-amylase: 82.31% and α-glucosidase inhibitions: 72.34%), and anti-inflammatory (albumin-denaturation inhibition: 76.3% and anti-lipoxygenase: 61.2%) activities (at 900 µg mL-1 concentration) than T. portulacastrum. However, the anti-lung cancer activities of these test plants against A549 cells were not considerable. According to FTIR analysis, the A. paniculata methanol extract has a larger number of characteristic peaks attributed to the active functional groups of pharmaceutically valuable bioactive components that belong to different types of phytochemicals. These findings imply that A. paniculata methanol extracts can be used for additional research, such as bioactive compound screening and purification, as well as assessing their potential biomedical uses in various in-vitro and in-research settings.


Subject(s)
Andrographis , Neoplasms , Humans , Hypoglycemic Agents/pharmacology , Andrographis paniculata , Methanol/chemistry , Antioxidants/pharmacology , Andrographis/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
10.
J Pharm Biomed Anal ; 240: 115924, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38142499

ABSTRACT

The quality standards for Andrographis paniculata, a widely used medicinal herb, exhibited significant variations across different pharmacopeias. In this study, we compared the HPLC content determination methods and total lactone content of A. paniculata samples from different regions, as specified in the Chinese (CP), United States (USP), European (EP), Thai (TP), and Indian pharmacopeias (IP), as well as the Hong Kong Chinese Materia Medica Standards (HK). We aimed to assess the differences and similarities among these pharmacopeias and harmonized international quality standards for A. paniculata. The analysis revealed variations in sample preparation, liquid chromatographic conditions, fingerprint profiles, and total lactone content among the different pharmacopeias. Specifically, the CP and HK methods exhibited superior sample preparation and chromatographic separation. Further comparing the content of 20 A. paniculata samples with the CP, USP, EP and HK methods showed consistent determinations for the same components, indicating similar detection capabilities. The discrepancies in total lactone content primarily stemmed from differences in the number and types of detected compounds. Moreover, the acceptance criteria exhibited a stringency in the order CP > HK > EP > USP. In conclusion, this comparison analysis of content determination in CP, USP, HK, EP, TP and IP provided a scientific foundation for the international standardization and trade regulations of A. paniculata. It also served as a valuable reference for the development of international quality standards for other medicinal herbs, facilitating the harmonization of global pharmaceutical standards.


Subject(s)
Andrographis , Diterpenes , Plants, Medicinal , Andrographis paniculata , Andrographis/chemistry , Diterpenes/analysis , Plants, Medicinal/chemistry , Lactones , Reference Standards , Plant Extracts/chemistry
11.
Environ Res ; 238(Pt 2): 117249, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37783331

ABSTRACT

The medical plant research has received more attention among researchers especially after the Covid-19 pandemic. This research performed to evaluate the antifungal, anti-lung cancer (A549), and anti-hyperglycemic activities of aqueous extract of Andrographis paniculata flower. Interestingly, A. paniculata flower aqueous extract contains pharmaceutically valuable phytochemicals such as alkaloid, phenolics, terpenoids, tannins, flavonoids, and protein. It also showed fine antifungal activity against test fungal pathogens in the following order as: Aspergillus niger > Fusarium solani > Trichoderma harzianum > A. parasiticus > P. expansum > Penicillium janthinellum with lowest MIC values as ranged from 100 to 300 µg mL-1. Interestingly, this aqueous extract also showed considerable anti-lung cancer activity, evidenced by dose and time dependent lung cancer cell line (A549) growth/proliferation inhibition/cytotoxicity activity (65%) at 300 µg mL-1 concentration. This can be achieved by plant extract through inducing the secretion of apoptosis related proteins such as TNF α, IFN-γ, and interleukin 2 leads to apoptosis in A549 cells. It also showed fine anti-diabetic activity by inhibiting α -amylase (58.41%) than α-glucosidase (54.74%) at 200 µg mL-1 concentration. The UV as well as FTIR results demonstrated that the aqueous extract of A. paniculata flower contains pharmaceutically valuable bioactive compounds, which may be responsible for the wide range of biomedical applications.


Subject(s)
Andrographis , Antifungal Agents , Humans , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Andrographis paniculata , Pandemics , Andrographis/chemistry , Flowers , Water , Hypoglycemic Agents/pharmacology
12.
Sci Rep ; 13(1): 2534, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781896

ABSTRACT

Andrographis paniculata, a medicinal plant in Thailand national list of essential medicines, has been proposed for treatment of patients with mild to moderate coronavirus disease 2019. This study aims to develop a highly selective and sensitive liquid chromatography triple quadrupole tandem mass spectrometry method for quantitative determination of major diterpenoids in plasma and urine with application in pharmacokinetics. Chromatographic separation was performed on C18 column using a gradient mobile phase of water and acetonitrile. Mass spectrometry was analyzed using multiple reaction monitoring with negative ionization mode. This validated analytical method was very sensitive, less time consuming in analysis, and allowed the reliability and reproducibility on its application. The clinical pharmacokinetics was evaluated after single oral administration of A. paniculata extract (calculated as 60 mg of andrographolide). The disposition kinetics demonstrated that major diterpenoids could enter into systemic circulation, but they are mostly biotransformed (phase II) into conjugated glucuronide and sulfate metabolites. These metabolites are predominantly found in plasma and then extremely eliminated, in part through urinary excretion. The successful application of this analytical method supports its suitable uses in further clinical benefits after oral administration of A. paniculata.


Subject(s)
Andrographis , COVID-19 , Diterpenes , Humans , Chromatography, Liquid/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Diterpenes/chemistry , Administration, Oral , Metabolic Networks and Pathways , Chromatography, High Pressure Liquid/methods , Andrographis/chemistry
13.
J Chromatogr Sci ; 61(6): 514-521, 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-36748260

ABSTRACT

Andrographis paniculata (family Acanthaceae) is known as Kalmegh, one of the traditionally used important medicinal plant contains several biologically active phytochemical including andrographolide. A. paniculata is broadly used by healthcare practitioners in India and also used in different traditional medicinal system. In this study, the leaves of A. paniculata were collected from West Medinipur, East Medinipur, South 24 Parganas, Purulia and Hooghly district of West Bengal, India. This study aiming towards validation and development of a simple, precise and reproducible reverse-phase high-performance liquid chromatography (RP-HPLC) and high-performance thin layer chromatography (HPTLC) methods for quantification of andrographolide in A. paniculata extracts. The validated RP-HPLC and HPTLC study confirmed that different concentrations of andrographolide content present in the plant samples, which are collected from above different districts of West Bengal, India. The amounts of andrographolide were found to be 2.71% (w/w), 3.19% (w/w), 1.83% (w/w), 1.73% (w/w) and 2.94% (w/w) in RP-HPLC study and 2.13% (w/w), 2.51% (w/w), 1.01% (w/w), 1.25% (w/w) and 2.15% (w/w) in HPTLC study. This precise, reproducible, accurate and specific method can be used for the quantification of andrographolide in kalmegh, as per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines recommendations.


Subject(s)
Andrographis , Diterpenes , Humans , Andrographis paniculata , Chromatography, Thin Layer , Chromatography, High Pressure Liquid , Andrographis/chemistry , Plant Extracts/chemistry , Diterpenes/analysis , Reference Standards
14.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677967

ABSTRACT

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Subject(s)
Andrographis , Corynebacterium diphtheriae , Diphtheria , Diterpenes , Andrographis paniculata , Andrographis/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology
15.
Rapid Commun Mass Spectrom ; 37(9): e9483, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36718976

ABSTRACT

RATIONALE: Diterpene lactones (DL) in Andrographis paniculata (AP) are known as "natural antibiotics" for their excellent antibacterial activity. During mass spectrometry (MS) analysis, the hydroxyl groups in the AP DL skeleton are prone to neutral loss of H2 O, producing high in-source fragment peaks and affecting the characterization of these components. METHODS: Mass tags were applied during the MS data acquisition step, and special adduct ion form was used to guide the data processing and characterization steps. Besides, the total number of characterized AP DLs significantly increased when combining the number of neutrally lost H2 O from AP DLs, incorporating information on the diagnostic ions, and adopting molecular networks generated with the Global Natural Products Social Molecular Networking database. RESULTS: Ninety-nine DLs, comprising 6 monohydroxyl groups, 20 dihydroxyl groups, 27 trihydroxy groups, and 46 DLs with more than 3 hydroxyl groups, were characterized from AP. In addition, based on the characteristic fragments in the product ions (C3 H4 , Δm/z = 40.03 Da), it could be assumed that 90 DLs had the C19-OH structure among the identified DLs. The current study provides a new approach for collecting, processing, and characterizing MS analysis of natural DLs prone to in-source fragmentation. CONCLUSIONS: MS characterization of AP DLs was significantly improved, and many potential new compounds were identified in AP. This characterization provides new methods for the purification and identification of AP DLs.


Subject(s)
Andrographis , Diterpenes , Andrographis paniculata , Lactones/chemistry , Andrographis/chemistry , Mass Spectrometry , Plant Extracts/chemistry , Diterpenes/chemistry
16.
J Biomol Struct Dyn ; 41(7): 2687-2697, 2023 04.
Article in English | MEDLINE | ID: mdl-35147481

ABSTRACT

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine which plays a crucial role in controlling inflammatory responses. The pathway of Rheumatoid arthritis (RA) leading to TNF-alpha is activated by macrophages and quite often by natural killer cells and lymphocytes. In the inflammatory phase, it is believed to be the main mediator and to be anchored with the progression of different diseases such as ankylosing spondylitis, Crohn's disease, and Rheumatoid arthritis (RA). The major goal of this study is to use in silico docking studies to investigate the anti-inflammatory potential of a bioactive molecule from the medicinal plant Andrographis paniculata. The three-dimensional structures of different phytochemicals of A. paniculata were obtained from PubChem database, and the receptor protein was derived from PDB database. Docking analysis was executed using AutoDock vina, and the binding energies were compared. Bisandrographolide A and Andrographidine C revealed the highest score of -8.6 Kcal/mol, followed by, Neoandrographolide (-8.5 Kcal/mol). ADME and toxicity parameters were evaluated for these high scoring ligands and results showed that Andrographidine C could be a potent drug, whereas Neoandrographolide and Bisandrographolide A can be modified in in vitro and can lead to a promising drug. Further, the top scorer (Andrographidine C) and control drug (Leflunomide) were subjected to 100 ns MD Simulation. The protein complex with Andrographidine C had more stable confirmation with lower RMSD (0.28 nm) and higher binding energy (-133.927 +/- 13.866 kJ/mol). In conclusion, Andrographidine C may be a potent surrogate to the disease-modifying anti-rheumatic drugs (DMARD's) & Non-steroidal anti-inflammatory drugs (NSAID's) that has fewer or minor adverse effects and can aid in RA management.


Subject(s)
Andrographis , Arthritis, Rheumatoid , Molecular Docking Simulation , Tumor Necrosis Factor-alpha/metabolism , Andrographis paniculata , Andrographis/chemistry , Andrographis/metabolism , Anti-Inflammatory Agents/metabolism , Arthritis, Rheumatoid/drug therapy , Phytochemicals/metabolism
17.
Food Chem ; 404(Pt A): 134515, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36240559

ABSTRACT

Andrographis paniculata (Burm. F.) Nees (AP) was a typical plant resource that has the concomitant function of both foodstuff and medicine, while the action mechanisms of its immune regulation, anti-inflammatory and anti-viral effects and the specific components remain unclear. In this work, a screening approach combining bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF-LC/MS) was hired to screen potential bioactive compounds from AP. The crude extract of AP exerted COX-2 and ACE2 inhibitory effects by other bioassays. Meanwhile, a total of eleven ligands targeting COX-2, IL-6 and ACE2 were screened out. Thereinto, two compounds including andrographolide and 14-deoxy-11,12-didehydroandrographolide exhibited strong binding affinities to COX-2, IL-6 and ACE2 by UF-LC/MS and molecular docking analysis. This is the first report to apply UF-LC/MS approach to rapidly screen out multi-target ligands from AP, and further decipher corresponding mechanisms, which could be beneficial to expedite the search for new multi-target bioactive compounds in other natural products or foods.


Subject(s)
Andrographis , Diterpenes , Andrographis/chemistry , Andrographis/metabolism , Ultrafiltration/methods , Andrographis paniculata , Chromatography, High Pressure Liquid/methods , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Angiotensin-Converting Enzyme 2 , Interleukin-6 , Plant Extracts/pharmacology , Plant Extracts/chemistry
18.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234698

ABSTRACT

Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.


Subject(s)
Andrographis , Antimalarials , Diterpenes , Plants, Medicinal , Andrographis/chemistry , Andrographis paniculata , Anti-Bacterial Agents , Anti-Inflammatory Agents/pharmacology , Antifungal Agents , Antioxidants , Diterpenes/chemistry , Hypoglycemic Agents , Lactones , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Water
19.
Daru ; 30(2): 253-272, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35922691

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a risk factor for prostate cancer (PCa) progression. Thus, this life-threatening disease demands a proactive treatment strategy. Andrographis paniculata (AP) is a promising candidate with various medicinal properties. However, the bioactivity of AP is influenced by its processing conditions especially the extraction solvent. OBJECTIVE: In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro. METHODS: Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression. RESULTS: APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10-100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death. CONCLUSION: In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.


Subject(s)
Andrographis , Diterpenes , Metabolic Syndrome , Prostatic Neoplasms , Male , Humans , Andrographis/chemistry , Andrographis paniculata , Leptin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Methanol , Metabolic Syndrome/drug therapy , Diterpenes/chemistry , Solvents/chemistry , Prostatic Neoplasms/drug therapy , Biological Assay , Ethanol
20.
Molecules ; 27(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889352

ABSTRACT

The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.


Subject(s)
Andrographis , COVID-19 Drug Treatment , Andrographis/chemistry , Andrographis paniculata , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery , Humans , Lead , Pandemics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...