Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.980
Filter
1.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724533

ABSTRACT

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Subject(s)
Anemia, Aplastic , CD47 Antigen , Eicosapentaenoic Acid , Animals , Anemia, Aplastic/pathology , Mice , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Apoptosis/drug effects , Phagocytosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Monocytes/metabolism , Monocytes/drug effects , Inflammation/pathology , Male , Efferocytosis
4.
NEJM Evid ; 3(6): EVIDoa2300362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804782

ABSTRACT

BACKGROUND: An inflammatory bone marrow microenvironment contributes to acquired bone marrow failure syndromes. CK0801, an allogeneic T regulatory (Treg) cell therapy product, can potentially interrupt this continuous loop of inflammation and restore hematopoiesis. METHODS: In this phase 1 dose-escalation study of CK0801 Treg cells, we enrolled patients with bone marrow failure syndromes with suboptimal response to their prior therapy to determine the safety and efficacy of this treatment for bone marrow failure syndromes. RESULTS: We enrolled nine patients with a median age of 57 years (range, 19 to 74) with an underlying diagnosis of aplastic anemia (n=4), myelofibrosis (n=4), or hypoplastic myelodysplasia (n=1). Patients had a median of three prior therapies for a bone marrow failure syndrome. Starting dose levels of CK0801 were 1 × 106 (n=3), 3 × 106 (n=3), and 10 × 106 (n=3) cells per kg of ideal body weight. No lymphodepletion was administered. CK0801 was administered in the outpatient setting with no infusion reactions, no grade 3 or 4 severe adverse reactions, and no dose-limiting toxicity. At 12 months, CK0801 induced objective responses in three of four patients with myelofibrosis (two had symptom response, one had anemia response, and one had stable disease) and three of four patients with aplastic anemia (three had partial response). Three of four transfusion-dependent patients at baseline achieved transfusion independence. Although the duration of observation was limited at 0.9 to 12 months, there were no observed increases in infections, no transformations to leukemia, and no deaths. CONCLUSIONS: In previously treated patients, CK0801 demonstrated no dose-limiting toxicity and showed evidence of efficacy, providing proof of concept for targeting inflammation as a therapy for bone marrow failure. (Funded by Cellenkos Inc.; Clinicaltrials.gov number, NCT03773393.).


Subject(s)
Anemia, Aplastic , Bone Marrow Failure Disorders , Humans , Middle Aged , Aged , Male , Adult , Female , Bone Marrow Failure Disorders/therapy , Anemia, Aplastic/therapy , Bone Marrow Diseases/therapy , Young Adult , Primary Myelofibrosis/therapy , T-Lymphocytes, Regulatory/immunology
5.
Front Immunol ; 15: 1384640, 2024.
Article in English | MEDLINE | ID: mdl-38720904

ABSTRACT

Background: For children with severe aplastic anemia, if the first immunosuppressive therapy (IST) fails, it is not recommended to choose a second IST. Therefore, for patients without matched sibling donor (MSD) and matched unrelated donor (MUD), haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) can be chosen as a salvage treatment. This article aims to explore the comparison between upfront Haplo-HSCT and salvage Haplo-HSCT after IST. Methods: 29 patients received salvage Haplo-HSCT, and 50 patients received upfront Haplo-HSCT. The two groups received Bu (Busulfan, 3.2mg/kg/d*2d on days -9 to-8), CY (Cyclophosphamide, 60mg/kg/d*2d on days -4 to-3), Flu (fludarabine, 40mg/m2/d*5d on days -9 to -5) and rabbit ATG (Anti-thymocyte globulin, total dose 10mg/kg divided into days -4 to -2). Results: The OS of the salvage Haplo-HSCT group showed no difference to the upfront Haplo-HSCT group (80.2 ± 8.0% vs. 88.7 ± 4.8%, p=0.37). The FFS of the salvage Haplo-HSCT group also showed no difference to the frontline Haplo-HSCT group (75 ± 8.2% vs. 84.9 ± 5.3%, p=0.27). There was no significant difference in the incidence of other complications after transplantation between the two groups, except for thrombotic microangiopathy (TMA). In the grouping analysis by graft source, the incidence of II-IV aGVHD in patients using PBSC ± BM+UCB was lower than that in the PBSC ± BM group (p=0.010). Conclusion: Upfront Haplo-HSCT and salvage Haplo-HSCT after IST in children with acquired severe aplastic anemia have similar survival outcomes. However, the risk of TMA increases after salvage Haplo-HSCT. This article provides some reference value for the treatment selection of patients. In addition, co-transplantation of umbilical cord blood may reduce the incidence of GVHD.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Salvage Therapy , Transplantation, Haploidentical , Humans , Anemia, Aplastic/therapy , Anemia, Aplastic/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Male , Female , Child , Child, Preschool , Salvage Therapy/methods , Adolescent , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Immunosuppressive Agents/therapeutic use , Transplantation Conditioning/methods , Infant , Treatment Outcome , Immunosuppression Therapy/methods
6.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 264-270, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716598

ABSTRACT

Objective: To evaluate the efficacy and safety of roxadustat in patients with refractory non-severe aplastic anemia (NSAA) . Methods: The clinical data of patients with refractory NSAA who had been treated with roxadustat continuously for at least 3 months and followed up for more than 6 months at Peking Union Medical College Hospital from October 2020 to August 2022 were retrospectively collected. The demographic information, clinical data, treatment efficacy, adverse reactions, and outcomes were evaluated, and the factors influencing efficacy were analyzed. Results: A total of 41 patients were included. The male-to-female ratio was 16∶25, and the median age was 52 (18-84) years. The median duration of roxadustat treatment was 5 (3-20) months, and the median follow-up was 15 (6-26) months. Hematologic improvement-erythroid (HI-E) was 12.2%, 29.3%, 46.3%, 43.9%, and 30.3% at 1, 2, 3, 6, and 12 months, respectively. The rate of transfusion independence was 28.5%, 38.1%, and 33.3% at 3, 6, and 12 months, respectively. Hemoglobin returned to normal in some patients after treatment with roxadustat. The incidence of adverse events was 22%, all of which were grade Ⅰ-Ⅱ and recoverable. No factors that could affect HI-E were identified. By the end of follow-up, 45% of the patients relapsed, with a median time to relapse of 7 (3-12) months. No clonal evolution was observed, and one patient died. Conclusion: Roxadustat effectively improved anemia with good tolerance in patients with refractory NSAA.


Subject(s)
Anemia, Aplastic , Glycine , Isoquinolines , Humans , Male , Female , Anemia, Aplastic/drug therapy , Middle Aged , Adult , Retrospective Studies , Aged , Adolescent , Isoquinolines/therapeutic use , Isoquinolines/adverse effects , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/adverse effects , Treatment Outcome , Aged, 80 and over , Young Adult
7.
Pediatr Transplant ; 28(4): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766976

ABSTRACT

BACKGROUND: The goal of this study was to assess the effect of donor type and pre-transplant immunotherapy (IST) on outcomes of hematopoietic stem cell transplantation (HSCT) for children and young adults with severe aplastic anemia (SAA). METHODS: This retrospective, multi-center study included 52 SAA patients, treated in 5 pediatric transplant programs in Florida, who received HSCT between 2010 and 2020 as the first- or second-line treatment. RESULTS: The median age at HSCT for all 52 patients was 15 years (range 1-25). The 3-year overall survival (OS) by donor type were as follows: 95% [95% CI 85.4-99] for matched related donors (MRD) (N = 24), 84% [95% CI 63.5-99] for haploidentical (N = 13), and 71% [95% CI 36-99] for matched unrelated donors (MUD) (N = 7). The 3-year OS was 81% [95% CI 69.7-99] for all patients, 90.5% [95% CI 79.5-99] for non-IST patients (N = 27), and 70% [95% CI 51-99] for IST patients (N = 24) (log-rank p = .04). Survival of haploidentical HSCT (haplo-HSCT) recipients with post-transplant cyclophosphamide (PTCy) (N = 13) was excellent for both groups: 100% for non-IST patients (N = 3) and 80% for IST patients (N = 10). The 3-year OS for patients with previous IST by donor type in groups where >5 patients were available was 78.8% [95% CI 52.3-99] for haplo-HSCT (N = 10) and 66.7% [95% CI 28.7-99] for MUD (N = 6). Although it appears that patients receiving HSCT ≥6 months after the start of IST had worse survival, the number of patients in each category was small and log-rank was not significant(p = .65). CONCLUSIONS: Patients receiving MUD and haplo-HSCT with PTCy had similar outcomes, suggesting that haplo-HSCT with PTCy could be included in randomized trials of upfront IST versus alternative donor HSCT.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Humans , Anemia, Aplastic/therapy , Adolescent , Child , Retrospective Studies , Male , Female , Child, Preschool , Young Adult , Adult , Infant , Treatment Outcome , Immunosuppression Therapy/methods , Tissue Donors , Immunosuppressive Agents/therapeutic use
8.
Int J Med Sci ; 21(6): 1027-1036, 2024.
Article in English | MEDLINE | ID: mdl-38774762

ABSTRACT

MRD-HSCT is the first-line therapy for children with SAA, while it is not easy to find a compatible donor due to the Chinese one-child policy. IST has a high recurrence rate, a risk of clonal transformation. Thus, Haplo-HSCT, as a first-line treatment, has gradually attracted clinicians' attention. To evaluate the efficacy of Haplo-HSCT in children with SAA, we performed a retrospective study (2006.06-2021.01) of 210 patients with AA who received HSCT or IST in Beijing Children's Hospital. The OS and FFS rates were analyzed to evaluate the efficacy of Haplo-HSCT and IST. We found that from 2006 to 2021, 3- and 5-year cumulative survival rates were both 85.3% in the first-line Haplo group, 98.1% and 96.8% in the first-line IST group, both 85.7% in the ATG group (P = 0.866), both 100% in the ATG + TPO group (P = 0.016), and 99.1% and 97.2% in the ATG + eltrombopag group (P = 0.056). 3- and 5-year cumulative FFS rates were both 85.3% in the first-line Haplo-HSCT group and 67.5% and 66.2% in the first-line IST group (P = 0.033). Therefore, we believe that Haplo-HSCT can be a first-line treatment for paediatric SAA.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Transplantation, Haploidentical , Humans , Hematopoietic Stem Cell Transplantation/methods , Child , Male , Female , Anemia, Aplastic/therapy , Anemia, Aplastic/mortality , Child, Preschool , Retrospective Studies , Adolescent , Transplantation, Haploidentical/methods , Infant , Treatment Outcome , Benzoates/therapeutic use , Pyrazoles/therapeutic use , Hydrazines/therapeutic use , Graft vs Host Disease/prevention & control
9.
Blood Cells Mol Dis ; 107: 102857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815307

ABSTRACT

BACKGROUND: Immune dysregulation is crucial in the pathogenesis of acquired aplastic anaemia (aAA). There is paucity of data regarding correlation of baseline cytokine profile with treatment response in aAA. OBJECTIVE: Present prospective case-control study aimed to correlate the baseline cytokines in patients with aAA with the treatment response. METHODS: Fifty-one patients with newly-diagnosed aAA > 13 years of either sex were enrolled over 1.5 years. Twenty age-and sex-matched healthy controls (HC) were also included. The cytokine profile (IL-2, 4, 6, 8, 10, 17, IFN-γ and TNF-α) in the peripheral blood plasma of aAA patients was performed at the baseline using cytometric bead analysis. The cytokine levels were compared with HC and correlated with response to immunosuppressive therapy (IST) at 3-months. RESULTS: The median age of cases was 29 years (range,13-74). The cases had higher mean levels of IL2 (p = 0.326), IL4 (p = 0.038), IL6 (p = 0.000), IL10 (p = 0.002), TNF-α (p = 0.302), IFN-γ (p = 0.569) and IL-17 (p = 0.284) than the HC. The baseline levels of all the cytokines were higher (statistically non-significant) among responders (n = 13) than the non-responders (n = 14) to IST. CONCLUSIONS: Baseline cytokine profile in patients with aAA might predict response to the IST. Larger studies are needed to validate our results.


Subject(s)
Anemia, Aplastic , Cytokines , Humans , Anemia, Aplastic/blood , Anemia, Aplastic/diagnosis , Anemia, Aplastic/drug therapy , Anemia, Aplastic/therapy , Male , Female , Adult , Cytokines/blood , Middle Aged , Adolescent , Case-Control Studies , Young Adult , Aged , Prospective Studies , Severity of Illness Index , Immunosuppressive Agents/therapeutic use , Treatment Outcome
10.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623668

ABSTRACT

BACKGROUND: Platelet (PLT) count is one of the most important parameters of automated hematology, as spurious PLT reports could affect medical judgement and bring significant risks. In most cases, spurious PLT will not be reported for review criteria, which will be triggered by abnormal PLT histograms and PLT flag(s). Here, we present a case of severe aplastic anemia after hematopoietic stem cell transplantation with spurious high platelet count with normal histogram and no PLT flag(s). METHODS: The electrical impedance channel (PLT-I) and the fluorescence channel (PLT-F) of Sysmex XN-series hematology analyzer was used to obtain PLT results. Then, the sample was retested by another hematology analyzer MINDRAY BC-7500 [NR] CRP, and incubation was performed to rule out cryoglobulin interference. Furthermore, a microscope was used to estimate the PLT count by the ratio of platelets to red blood cells and observe the morphology of cells. RESULTS: Both PLT-I and PLT-F test results were spuriously high, and microscopically assessed platelet counts were relatively reliable. The observed spiny cells and ghost cells caused by hemolysis may have contributed to the inaccuracy of instrumental counting in this case. CONCLUSIONS: For special hematologic patients, PLT-I with flags may not be sufficient for screening purposes and PLT-F is not always accurate. Multiple testing methods including manual microscopy are needed.


Subject(s)
Agmatine/analogs & derivatives , Anemia, Aplastic , Oxamic Acid/analogs & derivatives , Humans , Platelet Count/methods , Anemia, Aplastic/diagnosis , Reproducibility of Results , Blood Platelets
11.
Hematology ; 29(1): 2339778, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38625693

ABSTRACT

OBJECTIVE: To establish an efficient nomogram model to predict short-term survival in ICU patients with aplastic anemia (AA). METHODS: The data of AA patients in the MIMIC-IV database were obtained and randomly assigned to the training set and testing set in a ratio of 7:3. Independent prognosis factors were identified through univariate and multivariate Cox regression analyses. The variance inflation factor was calculated to detect the correlation between variables. A nomogram model was built based on independent prognostic factors and risk scores for factors were generated. Model performance was tested using C-index, receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA) and Kaplan-Meier curve. RESULTS: A total of 1,963 AA patients were included. A nomogram model with 7 variables was built, including SAPS II, chronic pulmonary obstructive disease, body temperature, red cell distribution width, saturation of peripheral oxygen, age and mechanical ventilation. The C-indexes in the training set and testing set were 0.642 and 0.643 respectively, indicating certain accuracy of the model. ROC curve showed favorable classification performance of nomogram. The calibration curve reflected that its probabilistic prediction was reliable. DCA revealed good clinical practicability of the model. Moreover, the Kaplan-Meier curve showed that receiving mechanical ventilation could improve the survival status of AA patients in the short term but did not in the later period. CONCLUSION: The nomogram model of the short-term survival rate of AA patients was built based on clinical characteristics, and early mechanical ventilation could help improve the short-term survival rate of patients.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/diagnosis , Anemia, Aplastic/therapy , Nomograms , Databases, Factual , Erythrocyte Indices , Intensive Care Units
12.
Am J Case Rep ; 25: e943801, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632857

ABSTRACT

BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for severe aplastic anemia (SAA). It is known that SAA can evolve into malignant clonal diseases, such as acute myeloblastic leukemia (AML) or myelodysplastic syndrome. However, the transformation of SAA into AML after allo-HSCT is a rare phenomenon. Here, we report a case of SAA transformed into AML after patient received human leucocyte antigen (HLA)-matched sibling peripheral blood stem cell transplantation. CASE REPORT A 51-year-old female patient presented with petechiae and fatigue and received a diagnosis of idiopathic SAA. The immunosuppressive therapy combined with umbilical cord blood transplantation failed for this patient. Then, she received HLA-matched sibling allogeneic peripheral blood stem cell transplantation (allo-PBSCT). However, 445 days after allo-PBSCT, the patient had a diagnosis of AML by bone marrow puncture. Donor-recipient chimerism monitoring and cytogenetic analysis confirmed that the leukemia was donor cell origin. Notably, a new HOXA11 mutation was detected in the peripheral blood of the patient after transplantation by whole-exome sequencing, which was the same gene mutation detected in the donor. The patient received 1 cycle of induction chemotherapy with azacytidine and achieved complete remission. However, the leukemia relapsed after 2 cycles of consolidation chemotherapy. Unfortunately, the patient died of leukemia progression 575 days after allo-HSCT. CONCLUSIONS The mechanism of how normal donor hematopoietic cells transform to leukemia in the host remains unclear. Donor cell leukemia provides a unique opportunity to examine genetic variations in donors and hosts with regards to the progression to malignancy.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Female , Humans , Middle Aged , Anemia, Aplastic/therapy , Tissue Donors , Leukemia, Myeloid, Acute/therapy , HLA Antigens
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 610-616, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660874

ABSTRACT

OBJECTIVE: To systematically screen and identify long noncoding RNA (lncRNA) associated with bone marrow adiposity changes in aplastic anemia (AA). METHODS: The PPARγ and C/EBPα ChIP-Seq data in ChIPBase was analyzed by bioinformatics and the potential lncRNA co-transcriptionally regulated by PPARγ and C/EBPα was screened. The expression of candidate lncRNA was verified by qRT-PCR in the in vitro adipogenic differentiation model of BM-MSC, BM-MSC infected with lenti-shPPARγ and lenti-shC/EBPα as well as clinical BM-MSC samples derived from AA and controls. RESULTS: PPARγ and C/EBPα were significantly highly expressed in AA BM-MSC, and knock-down of PPARγ and C/EBPα impaired the adipogenic capacity of AA BM-MSC. PPARγ and C/EBPα cotranscriptionally activate LINC01230 promoter activity in binding sites dependant manner. The LINC01230 was also aberrantly highly expressed in AA BM-MSC compared with controls. CONCLUSION: PPARγ and C/EBPα are aberrantly expressed in AA BM-MSC and may promote the adipogenic differentiation of AA BM-MSC, and to a certain extent mediate the bone marrow adiposity alteration by transcriptionally activating LINC01230 expression.


Subject(s)
Anemia, Aplastic , Bone Marrow , PPAR gamma , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Anemia, Aplastic/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Bone Marrow/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Adipogenesis , Adiposity , Bone Marrow Cells
14.
Blood ; 143(14): 1318-1320, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573610
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 308-314, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557385

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is a therapeutic option for various potentially life-threatening malignant and non-malignant diseases in children, such as malignancies, immunodeficiency syndromes, severe aplastic anemia, and inherited metabolic disorders. During transplantation, many factors can affect the nutritional status of the children, including radiotherapy, chemotherapy, gastrointestinal disorders, graft-versus-host disease, and medications. Malnutrition has been associated with decreased overall survival and increased complications in children undergoing HSCT, making nutritional support a crucial component of their management. However, currently, there is a lack of guidelines or consensus on nutritional support for children undergoing HSCT in China. Therefore, this review summarizes the progress in nutritional support for children undergoing HSCT, aiming to provide clinical guidance.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Malnutrition , Child , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Nutritional Support/adverse effects , Malnutrition/etiology , Graft vs Host Disease/complications , Graft vs Host Disease/therapy , Nutritional Status , Anemia, Aplastic/complications , Anemia, Aplastic/therapy
16.
Syst Rev ; 13(1): 101, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576005

ABSTRACT

BACKGROUND AND OBJECTIVE: Immunosuppressive therapy (IST) is the first choice for severe aplastic anemia (SAA) patients with hematopoietic stem cell transplantation (HSCT) limitation, and the main factor limiting its efficacy is too few residual hematopoietic stem/progenitor cells (HSPC). Eltrombopag (EPAG), as a small molecule thrombopoietin receptor agonist, can stimulate the proliferation of residual HSPC and restore the bone marrow hematopoietic function of patients. In recent years, many studies have observed the efficacy and safety of IST combined with EPAG in the treatment of SAA, but the results are still controversial. The aim of this study is to systematically evaluate the efficacy and safety of IST combined with or without EPGA in the treatment of SAA. METHODS: We conducted a systematic review of all relevant literature published up to January 19, 2024. Pooled odds ratio (OR) was calculated to compare the rates, along with 95% confidence intervals (CI) and p value to assess whether the results were statistically significant by Review Manager 5.4.1. The p values for the interactions between each subgroup were calculated by Stata 15.1. The Newcastle-Ottawa Scale and the Cochrane bias risk assessment tools were respectively used to evaluate the quality of the literature with cohort studies and randomized controlled trials. The Review Manager 5.4.1 and Stata 15.1 were used to assess bias risk and perform the meta-analysis. RESULTS: A total of 16 studies involving 2148 patients were included. The IST combined with the EPAG group had higher overall response rate (ORR) than the IST group at 3 months (pooled OR = 2.10, 95% CI 1.58-2.79, p < 0.00001) and 6 months (pooled OR = 2.13, 95% CI 1.60-2.83, p < 0.00001), but the difference between the two groups became statistically insignificant at 12 months (pooled OR = 1.13, 95% CI 0.75-1.72, p = 0.55). The results of complete response rate (CRR) (pooled OR at 3 months = 2.73, 95% CI 1.83-4.09, p < 0.00001, 6 months = 2.76, 95% CI 2.08-3.67, p < 0.00001 and 12 months = 1.38, 95% CI 0.85-2.23, p = 0.19) were similar to ORR. Compared with the IST group, the IST combined with the EPAG group had better overall survival rate (OSR) (pooled OR = 1.70, 95% CI 1.15-2.51, p = 0.008), but there were no statistically significant differences in event-free survival rate (EFSR) (pooled OR = 1.40, 95% CI 0.93-2.13, p = 0.11), clonal evolution rate (pooled OR = 0.68, 95% CI 0.46-1.00, p = 0.05) and other adverse events between the two groups. The results of subgroup analysis showed that different ages were a source of heterogeneity, but different study types and different follow-up times were not. Moreover, all p-values for the interactions were greater than 0.05, suggesting that the treatment effect was not influenced by subgroup characteristics. CONCLUSION: EPAG added to IST enables patients to achieve earlier and faster hematologic responses with a higher rate of complete response. Although it had no effect on overall EFSR, it improved OSR and did not increase the incidence of clonal evolution and other adverse events.


Subject(s)
Anemia, Aplastic , Hydrazines , Immunosuppressive Agents , Pyrazoles , Humans , Immunosuppressive Agents/therapeutic use , Anemia, Aplastic/drug therapy , Anemia, Aplastic/epidemiology , Immunosuppression Therapy , Benzoates/therapeutic use , Pathologic Complete Response , Treatment Outcome
17.
Clin Immunol ; 263: 110223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636890

ABSTRACT

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Subject(s)
Anemia, Aplastic , CD8-Positive T-Lymphocytes , GPI-Linked Proteins , Hematopoietic Stem Cells , Interleukin-15 , Monocytes , Receptors, IgG , Humans , Anemia, Aplastic/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Interleukin-15/pharmacology , Interleukin-15/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Monocytes/immunology , Monocytes/drug effects , Female , Male , Adult , Hematopoietic Stem Cells/immunology , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , Middle Aged , Fas Ligand Protein/metabolism , Fas Ligand Protein/immunology , Young Adult , Adolescent , Interferon-gamma/immunology , Interferon-gamma/metabolism , Receptors, Interleukin-15/metabolism , Receptors, Interleukin-15/immunology , Apoptosis/drug effects , Cell Differentiation/immunology
18.
Ann Hematol ; 103(6): 2103-2111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656370

ABSTRACT

OBJECTIVE: This study aimed to investigate the prognosis of unrelated umbilical cord blood transplantation (UCBT) using low-dose anti-thymocyte globulin (ATG) in children diagnosed with severe aplastic anemia (SAA). METHODS: This retrospective case series study was conducted involving pediatric SAA patients treated at the Capital Institute of Pediatrics from January 2020 to February 2023. All patients underwent a reduced-intensity conditioning (RIC) regimen alongside low-dose ATG. RESULTS: The study comprised nine patients (five males) with a median age of 5 years (range: 1.7 to 7 years). The median follow-up duration was 799 days (range: 367 to 1481 days), during which all patients survived. The median time interval from diagnosis to transplantation was 3 months (range: 1 to 9 months). The median dosage of ATG administered was 5 mg/kg (range: 2.5 to 7.5 mg/kg). The median durations for granulocyte and platelet engraftment were 15 days (range: 12 to 23 days) and 26 days (range: 12 to 41 days), respectively. Three patients experienced grade 2-4 acute graft-versus-host disease (aGVHD). Epstein-Barr virus (EBV) reactivation was observed in three patients, while cytomegalovirus (CMV) reactivation occurred in seven patients, with no cases of CMV disease or post-transplant lymphoproliferative disorder (PTLD). One patient experienced recurrence 15 months after transplantation due to influenza A infection. CONCLUSION: These findings indicate that SAA patients may attain a favorable prognosis following UCBT with a RIC regimen combined with low-dose ATG.


Subject(s)
Anemia, Aplastic , Antilymphocyte Serum , Cord Blood Stem Cell Transplantation , Humans , Anemia, Aplastic/therapy , Antilymphocyte Serum/administration & dosage , Antilymphocyte Serum/therapeutic use , Male , Female , Child, Preschool , Child , Retrospective Studies , Infant , Graft vs Host Disease/etiology , Transplantation Conditioning/methods , Unrelated Donors
19.
Int J Infect Dis ; 144: 107043, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583826

ABSTRACT

This is a case report of a 6-year-old girl with relapsed B cell acute lymphoblastic leukemia in which adoptive cell therapy was applied successfully to treat refractory human parvovirus (HPV) B19 infection. Allogenic chimeric antigen receptor (CAR) T-cell therapy (bispecific CD19/CD22) was bridged to hematopoietic stem cell transplantation (HSCT) using a haploidentical paternal donor. However, HPV B19 DNAemia progressed and transfusion-related graft versus host disease occurred. After finding a third-party related donor with a better HLA match, haploidentical HPV B19-seropositive CD45RA+ depleted cells (16.5 × 106/kg) were administered and paternal TCRαß+ depleted stem cell were retransplanted. The HPV B19 DNAemia became negative within 1 week and the reticulocyte, neutrophil, hemoglobin, and platelet counts gradually normalized. The patient remained stable during the 1-year outpatient follow-up period. Thus, our case report highlights that persistent B19 infection can lead to pancytopenia, aplastic crisis, and graft rejection and TCRαß+ depleted haplo-HSCT is an effective means of hematopoiesis recovery. CD45RO memory T-cell therapy is the key to treating and preventing the development of refractory severe HPV B19 infection.


Subject(s)
Hematopoietic Stem Cell Transplantation , Parvoviridae Infections , Parvovirus B19, Human , Receptors, Antigen, T-Cell, alpha-beta , Humans , Female , Child , Parvovirus B19, Human/immunology , Parvoviridae Infections/therapy , Parvoviridae Infections/immunology , Leukocyte Common Antigens/metabolism , Immunotherapy, Adoptive/methods , Anemia, Aplastic/therapy , Anemia, Aplastic/immunology , Graft vs Host Disease/therapy , Graft vs Host Disease/immunology , Treatment Outcome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...