Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.199
Filter
1.
Hematology ; 29(1): 2399421, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39240224

ABSTRACT

BACKGROUND: Previous observational studies have hinted at a potential correlation between aplastic anemia (AA) and the gut microbiome. However, the precise nature of this bidirectional causal relationship remains uncertain. METHODS: We conducted a bidirectional two-sample Mendelian randomization (MR) study to investigate the potential causal link between the gut microbiome and AA. Statistical analysis of the gut microbiome was based on data from an extensive meta-analysis (genome-wide association study) conducted by the MiBioGen Alliance, involving 18,340 samples. Summary statistical data for AA were obtained from the Integrative Epidemiology Unit database. Single -nucleotide polymorphisms (SNPs) were estimated and summarized using inverse variance weighted (IVW), MR Egger, and weighted median methods in the bidirectional MR analysis. Cochran's Q test, MR Egger intercept test, and sensitivity analysis were employed to assess SNP heterogeneity, horizontal pleiotropy, and stability. RESULTS: The IVW analysis revealed a significant correlation between AA and 10 bacterial taxa. However, there is currently insufficient evidence to support a causal relationship between AA and the composition of gut microbiome. CONCLUSION: This study suggests a causal connection between the prevalence of specific gut microbiome and AA. Further investigation into the interaction between particular bacterial communities and AA could enhance efforts in prevention, monitoring, and treatment of the condition.


Subject(s)
Anemia, Aplastic , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/microbiology , Genome-Wide Association Study
2.
Sci Rep ; 14(1): 18010, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097629

ABSTRACT

Prior research has identified associations between immune cells and aplastic anaemia (AA); however, the causal relationships between them have not been conclusively established. A two-sample Mendelian randomisation analysis was conducted to investigate the causal link between 731 immune cell signatures and AA risk using publicly available genetic data. Four types of immune signatures, including relative cell, absolute cell (AC), median fluorescence intensities and morphological parameters, were considered sensitivity analyses were also performed to verify the robustness of the results and assess potential issues such as heterogeneity and horizontal pleiotropy. Following multiple test adjustments using the False Discovery Rate (FDR) method, no statistically significant impact of any immunophenotype on AA was observed. However, twelve immunophenotypes exhibited a significant correlation with AA without FDR correction (p of IVW < 0.01), of which eight were harmful to AA: CD127- CD8br %T cell (Treg panel), CD25 on IgD + CD38dim (B cell panel), CD38 on naive-mature B cell (B cell panel), CD39 + resting Treg % CD4 Treg (Treg panel), CD39 + secreting Treg AC (Treg panel), CD8 on CD28 + CD45RA- CD8br (Treg panel), HLA DR + NK AC (TBNK panel), Naive DN (CD4-CD8-) AC (Maturation stages of T cell panel); and four were protective to AA: CD86 on CD62L + myeloid DC (cDC panel), DC AC (cDC panel), DN (CD4-CD8-) NKT %T cell (TBNK panel), and TD CD4 + AC (Maturation stages of T cell panel). The results of this study demonstrate a close link between immune cells and AA by genetic means, thereby improving the current understanding of the interaction between immune cells and AA risk and providing guidance for future clinical research.


Subject(s)
Anemia, Aplastic , Mendelian Randomization Analysis , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/immunology , Immunophenotyping , Genetic Predisposition to Disease , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
3.
Sci Rep ; 14(1): 19654, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179703

ABSTRACT

Recently, we have reported that extracellular vesicles (EVs) from the bone marrow mesenchymal stromal cells (BM-MSC) of aplastic anemia (AA) patients inhibit hematopoietic stem and progenitor cell (HSPC) proliferative and colony-forming ability and promote apoptosis. One mechanism by which AA BM-MSC EVs might contribute to these altered HSPC functions is through microRNAs (miRNAs) encapsulated in EVs. However, little is known about the role of BM-MSC EVs derived miRNAs in regulating HSPC functions in AA. Therefore, we performed miRNA profiling of EVs from BM-MSC of AA (n = 6) and normal controls (NC) (n = 6) to identify differentially expressed miRNAs. The Integrated DEseq2 analysis revealed 34 significantly altered mature miRNAs, targeting 235 differentially expressed HSPC genes in AA. Hub gene analysis revealed 10 HSPC genes such as IGF-1R, IGF2R, PAK1, PTPN1, etc., which are targeted by EV miRNAs and had an enrichment of chemokine, MAPK, NK cell-mediated cytotoxicity, Rap1, PI3k-Akt, mTOR signalling pathways which are associated with hematopoietic homeostasis. We further showed that miR-139-5p and its target, IGF-1R (hub-gene), might regulate HSPC proliferation and apoptosis, which may serve as potential therapeutic targets in AA. Overall, the study highlights that AA BM-MSC EV miRNAs could contribute to impaired HSPC functions in AA.


Subject(s)
Anemia, Aplastic , Extracellular Vesicles , Gene Expression Profiling , Mesenchymal Stem Cells , MicroRNAs , Anemia, Aplastic/genetics , Anemia, Aplastic/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Mesenchymal Stem Cells/metabolism , Hematopoietic Stem Cells/metabolism , Female , Male , Adult , Middle Aged , Hematopoiesis/genetics , Apoptosis/genetics , Bone Marrow Cells/metabolism , Signal Transduction
4.
Front Immunol ; 15: 1430938, 2024.
Article in English | MEDLINE | ID: mdl-39114664

ABSTRACT

Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.


Subject(s)
Anemia, Aplastic , Candidiasis, Chronic Mucocutaneous , STAT1 Transcription Factor , Adult , Female , Humans , Male , Anemia, Aplastic/genetics , Candidiasis, Chronic Mucocutaneous/genetics , Cord Blood Stem Cell Transplantation , Pedigree , Retrospective Studies , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
5.
Blood Cells Mol Dis ; 109: 102882, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39096784

ABSTRACT

INTRODUCTION: Telomere length related studies are limited in pediatric marrow failure cases due to difficulty in establishing population specific age related normograms. Moreover, there is paucity of data related to clinical relevance of telomere length in idiopathic aplastic anemia (IAA) and non telomere biology inherited bone marrow failure syndrome (IBMFS) cases. METHODOLOGY: Hence, in current study we investigated Relative telomere length (RTL) by RQ-PCR in 83 samples as: healthy controls (n = 44), IAA (n = 15) and IBMFS (n = 24). In addition, we performed chromosomal breakage studies and targeted NGS to screen for pathogenic variants. RESULTS & CONCLUSION: Median RTL was significantly different between control vs. IBMFS (p-0.002), IAA vs. IBMFS (p-0.0075) and DC vs. non-DC IBMFS (p-0.011) but not between control vs. IAA (p-0.46). RTL analysis had clinical utility in differentiating BMF cases as 75 % (9/12) of DC had short/very short telomeres compared to only 17 % (2/12) of non-DC IBMFS, 7 % (1/15) of IAA and 7 % (3/44) of controls (p < 0.001).


Subject(s)
Anemia, Aplastic , Bone Marrow Failure Disorders , Telomere Homeostasis , Telomere , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/diagnosis , Female , Male , Telomere/genetics , Child, Preschool , Bone Marrow Failure Disorders/genetics , Adolescent , Infant , Bone Marrow Diseases/genetics , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/pathology , Telomere Shortening , Case-Control Studies
6.
Haematologica ; 109(9): 2778-2789, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38988263

ABSTRACT

Aplastic anemia (AA) is a disease characterized by failure of hematopoiesis, bone marrow aplasia, and pancytopenia. It can be inherited or acquired. Although acquired AA is believed to be immune-mediated and random, new evidence suggests an underlying genetic predisposition. Besides confirmed genomic mutations that contribute to inherited AA (such as pathogenic mutations of TERT and TERC), germline variants, often in heterozygous states, also play a not negligible role in the onset and progression of acquired AA. These variants, associated with inherited bone marrow failure syndromes and inborn errors of immunity, contribute to the disease, possibly through mechanisms including gene homeostasis, DNA repair, and immune injury. This article explores the nuanced association between acquired AA and germline variants, detailing the clinical significance of germline variants in diagnosing and managing this condition. More work is encouraged to better understand the role of immunogenic pathogenic variants and whether somatic mutations participate as secondary "hits" in the development of bone marrow failure.


Subject(s)
Anemia, Aplastic , Genetic Predisposition to Disease , Germ-Line Mutation , Anemia, Aplastic/genetics , Anemia, Aplastic/diagnosis , Humans
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 962-964, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926996

ABSTRACT

Studies have found that 1/3 patients with acquired aplastic anemia have shortened telomere length, and the shorter the telomere, the longer the disease course, the more prone to relapse, the lower the overall survival rate, and the higher the probability of clonal evolution. The regulation of telomere length is affected by many factors, including telomerase activity, telomerase-related genes, telomere regulatory proteins and other related factors. Telomere shortening can lead to genetic instability and increases the probability of clonal evolution in patients with acquired aplastic anemia. This article reviews the role of telomere in the clonal evolution of acquired aplastic anemia and factors affecting telomere length.


Subject(s)
Anemia, Aplastic , Telomere Homeostasis , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Telomere Shortening , Clonal Evolution , Survival Rate , Recurrence , Telomere Homeostasis/genetics , Telomerase/genetics , Telomerase/metabolism , Genomic Instability/genetics , Humans
8.
Immunogenetics ; 76(4): 243-260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38904751

ABSTRACT

HLA alleles are representative of ethnicities and may play important roles in predisposition to hematological disorders. We analyzed DNA samples for HLA-A, -B, -C, -DRB1, and -DQB1 loci, from 1550 patients and 4450 potential related donors by PCR-SSO (Polymerase chain reaction sequence-specific oligonucleotides) and estimated allele frequencies in donors and patients from 1550 families who underwent bone marrow transplantation (BMT) in Egypt. We also studied the association between HLA allele frequencies and incidence of acute myeloid leukemia, acute lymphoblastic leukemia, and severe aplastic anemia. The most frequently observed HLA class I alleles were HLA- A*01:01 (16.9%), A*02:01 (16.1%), B*41:01 (8.7%), B*49:01 (7.3%), C*06:02 (25.1%), and C*07:01 (25.1%), and the most frequently observed class II alleles were HLA-DRB1*11:01 (11.8%), DRB1*03:01 (11.6%), DQB1*03:01 (27.5%), and DQB1*05:01 (18.9%). The most frequently observed haplotypes were A*33:01~B*14:02 ~ DRB1*01:02 (2.35%) and A*01:01~B*52:01~DRB1*15:01 (2.11%). HLA-DRB1*07:01 was associated with higher AML odds (OR, 1.26; 95% CI, 1.02-1.55; p = 0.030). Only HLA-B38 antigen showed a trend towards increased odds of ALL (OR, 1.52; 95% CI, 1.00-2.30; p = 0.049) HLA-A*02:01, -B*14:02, and -DRB1*15:01 were associated with higher odds of SAA (A*02:01: OR, 1.35; 95% CI, 1.07-1.70; p = 0.010; B*14:02: OR, 1.43; 95% CI, 1.06-1.93; p = 0.020; DRB1*15:01: OR, 1.32; 95% CI, 1.07-1.64; p = 0.011). This study provides estimates of HLA allele and haplotype frequencies and their association with hematological disorders in an Egyptian population.


Subject(s)
Alleles , Bone Marrow Transplantation , Gene Frequency , Haplotypes , Hematologic Diseases , Humans , Egypt , Male , Female , Adolescent , Adult , Child , Hematologic Diseases/genetics , Child, Preschool , Transplantation, Homologous , Leukemia, Myeloid, Acute/genetics , Young Adult , HLA Antigens/genetics , Middle Aged , Genetic Predisposition to Disease , Infant , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Anemia, Aplastic/genetics
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 825-830, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926974

ABSTRACT

OBJECTIVE: To investigate the expression level and clinical correlation of microRNA-144/451 gene cluster (miR-144/451) in different types of anemia. METHODS: The peripheral blood of patients with aplastic anemia (AA), myelodysplastic syndrome (MDS) and diffuse large B-cell lymphoma (DLBCL) who had been diagnosed with anemia for the first time and after chemotherapy were collected. The expression levels of miR-144 and miR-451 were measured by RT-qPCR, and the correlation between the expression levels of miR-144 and miR-451 and routine laboratory indexes was analyzed by Spearman correlation analysis. RESULTS: The expression levels of miR-144 and miR-451 in the peripheral blood of AA and MDS patients were significantly lower than those in normal controls (all P < 0.01). No statistical differences were observed in the expression level of miR-144 in three subgroups of DLBCL patients (P >0.05), while the expression level of miR-451 in peripheral blood of three subgroups of DLBCL patients were significantly higher than those in normal controls (all P < 0.05). Correlation analysis showed that the expression levels of miR-144 and miR-451 in AA patients were positively correlated with red blood cell distribution width-coefficient of variation (RDW-CV) (r =0.629, 0.574). There were no significant correlations between the expression levels of miR-144 and miR-451 and laboratory parameters in MDS and DLBCL patients. CONCLUSION: Different types of anemia disorders have varying levels of miR-144 and miR-451 expression, which is anticipated to develop into a secondary diagnostic and differential diagnostic indicator for clinical anemia diseases.


Subject(s)
MicroRNAs , Myelodysplastic Syndromes , Humans , MicroRNAs/genetics , Myelodysplastic Syndromes/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Anemia, Aplastic/genetics , Anemia , Multigene Family
10.
Transplant Cell Ther ; 30(8): 770.e1-770.e10, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810947

ABSTRACT

Germline genetic testing for patients with severe aplastic anemia (SAA) is recommended to guide treatment, including the use of immunosuppressive therapy and/or adjustment of hematopoietic cell transplantation (HCT) modalities. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory condition often associated with cytopenias with autosomal recessive (AR) or X-linked recessive (XLR) inheritance. HLH is part of the SAA differential diagnosis, and genetic testing may identify variants in HLH genes in patients with SAA. The impact of pathogenic/likely pathogenic (P/LP) variants in HLH genes on HCT outcomes in SAA is unclear. In this study, we aimed to determine the frequency of HLH gene variants in a large cohort of patients with acquired SAA and to evaluate their association(s) with HCT outcomes. The Transplant Outcomes in Aplastic Anemia project, a collaboration between the National Cancer Institute and the Center for International Blood and Marrow Transplant Research, collected genomic and clinical data from 824 patients who underwent HCT for SAA between 1989 and 2015. We excluded 140 patients with inherited bone marrow failure syndromes and used exome sequencing data from the remaining 684 patients with acquired SAA to identify P/LP variants in 14 HLH-associated genes (11 AR, 3 XLR) curated using American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) criteria. Deleterious variants of uncertain significance (del-VUS) were defined as those not meeting the ACMG/AMP P/LP criteria but with damaging predictions in ≥3 of 5 meta-predictors (BayesDel, REVEL, CADD, MetaSVM, and/or EIGEN). The Kaplan-Meier estimator was used to calculate the probability of overall survival (OS) after HCT, and the cumulative incidence calculator was used for other HCT outcomes, accounting for relevant competing risks. There were 46 HLH variants in 49 of the 684 patients (7.2%). Seventeen variants in 19 patients (2.8%) were P/LP; 8 of these were loss-of-function variants. Among the 19 patients with P/LP HLH variants, 16 (84%) had monoallelic variants in genes with AR inheritance, and 3 had variants in XLR genes. PRF1 was the most frequently affected gene (in 8 of the 19 patients). We found no statistically significant differences in transplantation-related factors between patients with and those without P/LP HLH variants. The 5-year survival probability was 89% (95% confidence interval [CI], 72% to 99%) in patients with P/LP HLH variants and 70% (95% CI, 53% to 85%) in those with del-VUS HLH variants, compared to 66% (95% CI, 62% to 70%) in those without variants (P = .16, log-rank test). The median time to neutrophil engraftment was 16 days for patients with P/LP HLH variants and 18 days in those with del-VUS HLH variants or without variants combined (P = .01, Gray's test). No statistically significant associations between P/LP HLH variants and the risk of acute or chronic graft-versus-host disease were noted. In this large cohort of patients with acquired SAA, we found that 2.8% of patients harbored a P/LP variant in an HLH gene. No negative effects of HLH gene variants on post-HCT survival were noted. The small number of patients with P/LP HLH variants limits the study's ability to provide conclusive evidence; nonetheless, our data suggest that there is no need for special transplantation considerations for patients with SAA carrying P/LP variants.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/therapy , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Female , Male , Adult , Child , Adolescent , Child, Preschool , Young Adult , Middle Aged , Treatment Outcome , Genetic Variation , Infant
11.
Hematology ; 29(1): 2337160, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38597819

ABSTRACT

Pathogenic variants in the genes SAMD9 (sterile a-motif domain containing protein - 9) and SAMD9L (SAMD9-like) cause bone marrow failure with characteristic syndromic features. We report a case of a previously healthy, 3-year-old boy with no dysmorphology, who presented with severe aplastic anemia and a novel variant in the SAMD9L gene. His father, elder brother and sister who harbored the same variant were completely healthy. In the absence of a matched unrelated donor, he underwent a stem cell transplant from his sister, a 10/10 match. Almost 2 years later he developed donor type aplasia and succumbed to an invasive fungal infection after a failed haplograft from his mother. This case highlights the pathogenicity of this previously undescribed germline variation of uncertain significance in the SAMD9L gene and the value of comprehensive genetic testing for inherited bone marrow failures even in the absence of a positive family history or characteristic congenital abnormalities.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Pancytopenia , Male , Female , Child , Humans , Aged , Child, Preschool , Bone Marrow , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Transcription Factors , Hematopoietic Stem Cell Transplantation/adverse effects , Intracellular Signaling Peptides and Proteins/genetics
12.
Ann Hematol ; 103(7): 2245-2256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644415

ABSTRACT

BACKGROUND: Aplastic anemia (AA) is a kind of bone marrow failure (BMF) characterized by pancytopenia with hypoplasia/aplasia of bone marrow. Immunosuppressive therapy and bone marrow transplantation are effective methods to treat severe aplastic anemia. However, the efficacy is limited by complications and the availability of suitable donors. This study aimed to determine whether any circulating druggable protein levels may have causal effects on AA and provide potential novel drug targets for AA. METHODS: Genetic variants strongly associated with circulating druggable protein levels to perform Mendelian randomization (MR) analyses were used. The effect of these druggable protein levels on AA risk was measured using the summary statistics from a large-scale proteomic genome-wide association study (GWAS) and FinnGen database ( https://www.finngen.fi/en/access_results ). Multivariable MR analyses were performed to statistically adjust for potential confounders, including platelet counts, reticulocyte counts, neutrophil counts, and proportions of hematopoietic stem cells. RESULTS: The data showed that higher level of circulating IFN-γ levels was causally associated with AA susceptibility. The causal effects of circulating IFN-γ levels on the AA were broadly consistent, when adjusted for platelet counts, reticulocyte counts, neutrophil counts and proportions of hematopoietic stem cells. CONCLUSIONS: High levels of circulating IFN-γ levels might increase the risk of AA and might provide a potential novel target for AA.


Subject(s)
Anemia, Aplastic , Genome-Wide Association Study , Interferon-gamma , Mendelian Randomization Analysis , Proteome , Anemia, Aplastic/genetics , Anemia, Aplastic/blood , Humans , Interferon-gamma/blood , Proteome/analysis , Male , Female
13.
Eur J Med Genet ; 69: 104939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614309

ABSTRACT

ADH5/ALDH2 deficiency is a rare inherited syndrome characterized by short stature, microcephaly, delayed mental development, and hematopoietic dysfunction and has recently been proposed as a disease paradigm. Acute and severe presentations include aplastic anemia, myelodysplastic syndrome, or leukemia, requiring bone marrow transplantation during childhood. Conversely, non-hematological manifestations may exhibit a prolonged and nonspecific clinical trajectory, with growth failure and developmental delay, most of which are often overlooked, particularly in patients with milder symptoms. Here, we describe the clinical course of a girl with a wide spectrum of clinical presentations, including nonspecific hematopoietic disorders, growth retardation, mild developmental delay, amblyopia, hemophagocytic lymphohistiocytosis, and verruca vulgaris, culminating in a genetic diagnosis of AMeD syndrome at 12 years of age. We also summarized the clinical manifestations of previously reported cases of AMeD syndrome. Cumulatively, 13 females and 5 males have been documented, with a cardinal triad of symptoms, aplastic anemia, short stature, and intellectual disability. Additional characteristic observations included pigmentary deposition in approximately half of the cases and skeletal difficulties in one-quarter. We propose that early diagnosis of patients who exhibit relatively mild phenotypes of skin or skeletal lesions is important for managing and improving the quality of life of patients with AMeD syndrome.


Subject(s)
Phenotype , Humans , Female , Child , Aldehyde Dehydrogenase, Mitochondrial/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Male , Microcephaly/genetics , Microcephaly/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 610-616, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660874

ABSTRACT

OBJECTIVE: To systematically screen and identify long noncoding RNA (lncRNA) associated with bone marrow adiposity changes in aplastic anemia (AA). METHODS: The PPARγ and C/EBPα ChIP-Seq data in ChIPBase was analyzed by bioinformatics and the potential lncRNA co-transcriptionally regulated by PPARγ and C/EBPα was screened. The expression of candidate lncRNA was verified by qRT-PCR in the in vitro adipogenic differentiation model of BM-MSC, BM-MSC infected with lenti-shPPARγ and lenti-shC/EBPα as well as clinical BM-MSC samples derived from AA and controls. RESULTS: PPARγ and C/EBPα were significantly highly expressed in AA BM-MSC, and knock-down of PPARγ and C/EBPα impaired the adipogenic capacity of AA BM-MSC. PPARγ and C/EBPα cotranscriptionally activate LINC01230 promoter activity in binding sites dependant manner. The LINC01230 was also aberrantly highly expressed in AA BM-MSC compared with controls. CONCLUSION: PPARγ and C/EBPα are aberrantly expressed in AA BM-MSC and may promote the adipogenic differentiation of AA BM-MSC, and to a certain extent mediate the bone marrow adiposity alteration by transcriptionally activating LINC01230 expression.


Subject(s)
Anemia, Aplastic , Bone Marrow , PPAR gamma , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Anemia, Aplastic/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Bone Marrow/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Adipogenesis , Adiposity , Bone Marrow Cells
16.
Int J Lab Hematol ; 46(3): 515-522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38357712

ABSTRACT

BACKGROUND: Altered T-cell repertoire with an aberrant T-cell activation and imbalance of the Th17/Treg cells has been reported in acquired aplastic anemia (aAA). miRNAs are well known to orchestrate T-cell activation and differentiation, however, their role in aAA is poorly characterized. The study aimed at identifying the profile of miRNAs likely to be involved in T-cell activation and the Th17/Treg-cell imbalance in aAA, to explore newer therapeutic targets. METHODS: Five milliliters peripheral blood samples from 30 patients of aAA and 15 healthy controls were subjected to flow cytometry for evaluating Th17- and Treg-cell subsets. The differential expression of 7 selected miRNAs viz; hsa-miR-126-3p, miR-146b-5p, miR-155-5p, miR-16, miR-17, miR-326, and miR-181c was evaluated in the PB-MNCs. Expression analysis of the miRNAs was performed using qRT-PCR and fold change was calculated by 2-ΔΔCt method. The alterations in the target genes of deregulated miRNAs were assessed by qRT-PCR. The targets studied included various transcription factors, cytokines, and downstream proteins. RESULTS: The absolute CD3+ lymphocytes were significantly elevated in the PB of aAA patients when compared with healthy controls (p < 0.0035), however, the CD4:CD8 ratio was unperturbed. Th17: Treg-cell ratio was altered in aAA patients (9.1 vs. 3.7%, p value <0.05), which correlated positively with disease severity and the PNH positive aAA. Across all severities of aAA, altered expression of the 07 miRNAs was noted in comparison to controls; upregulation of miR-155 (FC-2.174, p-value-0.0001), miR-146 (FC-2.006, p-value-0.0001), and miR-17 (FC-3.1, p-value-0.0001), and downregulation of miR-126 (FC-0.329, p-value-0.0001), miR-181c (FC-0.317, p-value-0.0001), miR-16 (FC-0.348, p-value-0.0001), and miR-326 (FC-0.334, p-value-0.0001). Target study for these miRNAs revealed an increased expression of transcription factors responsible for Th1 and Th17 differentiation (T-bet, RORϒt, IL-17, IL-6, and IFN-ϒ), T-cell activation (NFκB, MYC, and PIK3R2), downregulation of FOX-P3, and other regulatory downstream molecules like SHIP-1, ETS-1, IRAK-1, TRAF-6, and PTEN. CONCLUSION: The study for the first time highlights the plausible role of different miRNAs in deregulating the Th17/Treg-cell imbalance in aAA, and comprehensively suggest the role of altered NF-kB and mTOR pathways in aAA. The axis may be actively explored for development of newer therapeutic targets in aAA.


Subject(s)
Anemia, Aplastic , Lymphocyte Activation , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Humans , MicroRNAs/genetics , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Anemia, Aplastic/immunology , Anemia, Aplastic/genetics , Male , Female , Adult , Middle Aged , Gene Expression Regulation , Aged , Adolescent
17.
Bone Marrow Transplant ; 59(4): 444-450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38291125

ABSTRACT

Aplastic anemia (AA) is the prototypical bone marrow failure syndrome. In the current era of readily available 'molecular annotation', application of comprehensive next-generation sequencing panels has generated novel insights into underlying pathogenetic mechanisms, potentially leading to improvements in personalized therapeutic approaches. New evidence has emerged as to the role of somatic loss of HLA class I allele expression in 'immune-mediated' AA, associated molecular aberrations, and risk of clonal evolution. A deeper understanding has emerged regarding the role of 'myeloid' gene mutations in this context, translating patho-mechanistic insights derived from wider clinical and translational research within the myeloid disorder arena. Here, we review contemporary 'tools' which aid in confirmation of a diagnosis of AA, with an additional focus on their potential in guiding therapeutic options. A specific emphasis is placed upon interpretation and integration of this detailed diagnostic information and how this may inform optimal transplantation strategies.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Bone Marrow Failure Disorders , Mutation
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167025, 2024 03.
Article in English | MEDLINE | ID: mdl-38237741

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSC) are an integral part of the BM niche that is essential to maintain hematopoietic homeostasis. In aplastic anemia (AA), a few studies have reported phenotypic defects in the BM-MSC, such as reduced proliferation, imbalanced differentiation, and apoptosis; however, the alterations at the molecular level need to be better characterized. Therefore, the current study aims to identify the causative factors underlying the compromised functions of AA BM-MSC that might eventually be contributing to the AA pathobiology. METHODS: We performed RNA sequencing (RNA-Seq) using the Illumina platform to comprehend the distinction between the transcriptional landscape of AA and control BM-MSC. Further, we validated the alterations observed in senescence by Senescence- associated beta-galactosidase (SA -ß-gal) assay, DNA damage by γH2AX staining, and telomere attrition by relative telomere length assessment and telomerase activity assay. We used qRT-PCR to analyze changes in some of the genes associated with these molecular mechanisms. RESULTS: The transcriptome profiling revealed enrichment of senescence-associated genes and pathways in AA BM-MSC. The senescent phenotype of AA BM-MSC was accompanied by enhanced SA -ß-gal activity and elevated expression of senescence associated genes TP53, PARP1, and CDKN1A. Further, we observed increased γH2AX foci indicating DNA damage, reduced telomere length, and diminished telomerase activity in the AA BM-MSC. CONCLUSION: Our results highlight that AA BM-MSC have a senescent phenotype accompanied by other cellular defects like DNA damage and telomere attrition, which are most likely driving the senescent phenotype of AA BM-MSC thus hampering their hematopoiesis supporting properties as observed in AA.


Subject(s)
Anemia, Aplastic , Mesenchymal Stem Cells , Telomerase , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/metabolism , Telomerase/genetics , Telomerase/metabolism , Mesenchymal Stem Cells/metabolism , Telomere/genetics , DNA Repair
19.
Eur J Haematol ; 112(5): 810-818, 2024 May.
Article in English | MEDLINE | ID: mdl-38213291

ABSTRACT

INTRODUCTION: During normal aging, telomeric DNA is gradually lost in dividing somatic cells, and critically short telomeres lead to replicative senescence, apoptosis, or chromosomal instability. We studied telomere length in bone marrow failure syndromes (BMFS) compared to normal healthy population. METHODS: Peripheral blood was collected from the participants, and genomic DNA was extracted. Relative telomere length was measured using a quantitative polymerase chain reaction. Statistical analysis was performed using SPSS and GraphPad Prism 8.2 software. RESULTS: The median age of normal Indian population was 31 (0-60) years. As expected, telomere length (TL) showed a decline with age and no difference in TL between males and females. The median age of 650 patients with aplastic anemia (AA) was 30 (1-60) years. TL was significantly shorter in patients with AA compared to healthy controls (p < .001). In FA and MDS patients, TL was significantly shorter than age-matched healthy controls (p = .028; p < .001), respectively. There was no difference between the median TL in age-matched AA and FA patients (p = .727). However, patients with MDS had shorter TL than age-matched AA (p = .031). CONCLUSION: TL in BMF syndrome patients was significantly shorter than age-matched healthy controls.


Subject(s)
Anemia, Aplastic , Male , Female , Humans , Adult , Middle Aged , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Bone Marrow Failure Disorders , Telomere/genetics , Telomere Shortening , DNA
20.
Transplant Cell Ther ; 30(3): 281.e1-281.e13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972732

ABSTRACT

In patients with immune-mediated acquired aplastic anemia (AA), HLA class I alleles often disappear from the surface of hematopoietic progenitor cells, potentially enabling evasion from cytotoxic T lymphocyte-mediated pathogenesis. Although HLA class I allele loss has been studied in AA patients treated with immunosuppressive therapy (IST), its impact on allogeneic bone marrow transplantation (BMT) has not been thoroughly investigated. The purpose of this study was to evaluate the clinical implications of HLA class I allele loss in patients with acquired AA undergoing allogeneic BMT. The study enrolled acquired AA patients who underwent initial BMT from unrelated donors through the Japan Marrow Donor Program between 1993 and 2011. The presence of HLA class I allele loss due to loss of heterozygosity (HLA-LOH) was assessed using pretransplantation blood DNA and correlated with clinical data obtained from the Japanese Transplant Registry Unified Management Program. A total of 432 patients with acquired AA were included in the study, and HLA-LOH was detected in 20 of the 178 patients (11%) available for analysis. Patients with HLA-LOH typically presented with more severe AA at diagnosis (P = .017) and underwent BMT earlier (P < .0001) compared to those without HLA-LOH. They also showed a slight but significant recovery in platelet count from the time of diagnosis to BMT (P = .00085). However, HLA-LOH status had no significant effect on survival, engraftment, graft failure, chimerism status, graft-versus-host disease, or other complications following BMT, even when the 20 HLA-LOH+ patients were compared with the 40 propensity score-matched HLA-LOH- patients. Nevertheless, patients lacking HLA-A*02:06 or HLA-B*40:02, the alleles most frequently lost and associated with a better IST response, showed higher survival rates compared to those lacking other alleles, with estimated 5-year overall survival (OS) rates of 100% and 44%, respectively (P = .0042). In addition, in a specific subset of HLA-LOH- patients showing clinical features similar to HLA-LOH+ patients, the HLA-A*02:06 and HLA-B*40:02 allele genotypes correlated with better survival rates compared with other allele genotypes, with estimated 5-year OS rates of 100% and 43%, respectively (P = .0096). However, this genotype correlation did not extend to all patients, suggesting that immunopathogenic mechanisms linked to the loss of certain HLA alleles, rather than the HLA genotypes themselves, influence survival outcomes. The survival benefit associated with the loss of these two alleles was confirmed in a multivariable Cox regression model. The observed correlations between HLA loss and the pretransplantation clinical manifestations and between loss of specific HLA class I alleles and survival outcomes in AA patients may improve patient selection for unrelated BMT and facilitate further investigations into the immune pathophysiology of the disease.


Subject(s)
Anemia, Aplastic , Bone Marrow Transplantation , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Alleles , HLA-B Antigens/genetics , Unrelated Donors , HLA-A Antigens/genetics
SELECTION OF CITATIONS
SEARCH DETAIL