Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.253
Filter
1.
ACS Appl Mater Interfaces ; 16(22): 28209-28221, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778020

ABSTRACT

Diabetic chronic wounds are notoriously difficult to heal as a result of their susceptibility to infection. To address this issue, we constructed an innovated and adaptable solution in the form of injectable chitosan (CS) hydrogel, denoted as CCOD, with enhanced antibacterial and anti-inflammatory properties. This hydrogel is created through a Schiff base reaction that combines chitosan-grafted chlorogenic acid (CS-CGA) and oxidized hyaluronic acid (OHA) with deferoxamine (DFO) as a model drug. The combination of CS and CGA has demonstrated excellent antibacterial and anti-inflammatory properties, while grafting played a pivotal role in making these positive effects stable. These unique features make it possible to customize injectable hydrogel and fit any wound shape, allowing for more effective and personalized treatment of complex bacterial infections. Furthermore, the hydrogel system is not only effective against inflammation and bacterial infections but also possesses antioxidant and angiogenic abilities, making it an ideal solution for the repair of chronic wounds that have been previously thought of as unmanageable.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Chitosan , Chlorogenic Acid , Deferoxamine , Hyaluronic Acid , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Deferoxamine/chemistry , Deferoxamine/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Mice , Humans , Oxidation-Reduction , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/administration & dosage , Angiogenesis Inducing Agents/therapeutic use , Neovascularization, Physiologic/drug effects , Staphylococcus aureus/drug effects , Angiogenesis
2.
J Colloid Interface Sci ; 667: 54-63, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615623

ABSTRACT

Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.


Subject(s)
Alginates , Gelatin , Hydrogels , Insulin-Secreting Cells , Vascular Endothelial Growth Factor A , Hydrogels/chemistry , Alginates/chemistry , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/administration & dosage , Gelatin/chemistry , Animals , Polyesters/chemistry , Rats , Cell Survival/drug effects , Humans , Diabetes Mellitus, Type 1/therapy , Methacrylates/chemistry , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/administration & dosage , Surface Properties
3.
Lab Chip ; 24(10): 2644-2657, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38576341

ABSTRACT

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.


Subject(s)
Microfluidic Analytical Techniques , Neovascularization, Pathologic , Humans , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Cell Line, Tumor , Human Umbilical Vein Endothelial Cells , Diffusion , Neoplasms/metabolism , Neoplasms/pathology , Angiogenesis Inducing Agents/metabolism , Angiogenesis Inducing Agents/pharmacology , Equipment Design
4.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673925

ABSTRACT

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Subject(s)
Endothelial Cells , Hydrogen Sulfide , Vascular Endothelial Growth Factor Receptor-2 , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Rats, Sprague-Dawley , Cell Hypoxia , Cell Proliferation/drug effects , Tyrosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/metabolism , Serine/metabolism , Hypoxia/metabolism
5.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Article in English | MEDLINE | ID: mdl-38510794

ABSTRACT

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Subject(s)
Calcium Phosphates , Diabetes Mellitus , Melatonin , Nanocomposites , Humans , Tissue Scaffolds/chemistry , Melatonin/pharmacology , NF-E2-Related Factor 2 , Endothelial Cells , Antioxidants/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Heme Oxygenase-1 , Angiogenesis Inducing Agents/pharmacology , Angiogenesis , Prospective Studies , Osteogenesis , Signal Transduction , Bone Regeneration
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511325

ABSTRACT

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glycolysis , Hindlimb , Ischemia , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction , Animals , Ischemia/drug therapy , Ischemia/physiopathology , Ischemia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycolysis/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Humans , Hindlimb/blood supply , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Nitric Oxide Synthase Type III/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cells, Cultured , Angiogenesis Inducing Agents/pharmacology , Peptide Fragments/pharmacology , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Disease Models, Animal , Incretins/pharmacology , Angiogenesis
7.
Biomater Adv ; 153: 213521, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37356285

ABSTRACT

Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Humans , Rats , Angiogenesis Inducing Agents/pharmacology , Bone Marrow , Femur , Rodentia
8.
Mediators Inflamm ; 2023: 1958046, 2023.
Article in English | MEDLINE | ID: mdl-37138666

ABSTRACT

Introduction: Angiogenesis contributes to the pathophysiology of cardiovascular disease (CVD). Some cardiovascular drugs used in the treatment of CVD have an effect on the process of angiogenesis. Methods: Transgenic Tg (flk1: EGFP) zebrafish embryos were used to identify the effects of some cardiovascular drugs on angiogenesis during vertebral development in vivo. Zebrafish embryos at a one-cell stage or two-cell stage were cultured with embryo medium containing cardiovascular drugs at a final solvent concentration of 0.5% (V/V) dimethyl sulfoxide (DMSO) for 24 hours in 24-well plates. Results: We found that 6 drugs including isosorbide mononitrate, amlodipine, bisoprolol fumarate, carvedilol, irbesartan, and rosuvastatin calcium may affect angiogenesis by vascular endothelial growth factor (VEGF) signaling pathway. Conclusion: These new findings of some cardiovascular drugs should improve the treatment of cardiovascular diseases.


Subject(s)
Cardiovascular Agents , Neovascularization, Physiologic , Animals , Animals, Genetically Modified , Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Zebrafish , Angiogenesis Inducing Agents/pharmacology
9.
ACS Biomater Sci Eng ; 9(5): 2647-2662, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37097124

ABSTRACT

Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.


Subject(s)
Metal Nanoparticles , Humans , Cell Line , Animals , Metal Nanoparticles/chemistry , Opioid Peptides/chemistry , Dihydrotestosterone/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wound Healing , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Cell Survival
10.
J Heart Lung Transplant ; 42(6): 716-729, 2023 06.
Article in English | MEDLINE | ID: mdl-36964085

ABSTRACT

BACKGROUND: Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect. METHODS: We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation. RESULTS: In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 µm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients. CONCLUSIONS: Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Humans , Rats , Animals , Induced Pluripotent Stem Cells/transplantation , Stroke Volume , Angiogenesis Inducing Agents/pharmacology , Ventricular Function, Left , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Disease Models, Animal
11.
Biomed Pharmacother ; 157: 114041, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423543

ABSTRACT

Melatonin is a molecule with different antitumor actions in breast cancer and has been described as an inhibitor of vascular endothelial growth factor (VEGF). Despite the recognition of the key role exerted by VEGF in tumor angiogenesis, limitations arise when developing models to test new antiangiogenic molecules. Thus, the aim of this study was to develop rapid, economic, high capacity and easy handling angiogenesis assays to test the antiangiogenic effects of melatonin and demonstrate its most effective dose to neutralize and interfere with the angiogenic sprouting effect induced by VEGF and MCF-7. To perform this, 3D endothelial cell (HUVEC) spheroids and a chicken embryo chorioallantoic membrane (CAM) assay were used. The results showed that VEGF and MCF-7 were able to stimulate the sprouting of the new vessels in 3D endothelial spheroids and the CAM assay, and that melatonin had an inhibitory effect on angiogenesis. Specifically, as the 1 mM pharmacological dose was the only effective dose able to inhibit the formation of ramifications around the alginate in the CAM assay model, this inhibition was shown to occur in a dose-dependent manner. Taken together, these techniques represent novel tools for the development of antiangiogenic molecules such as melatonin, with possible implications for the therapy of breast cancer.


Subject(s)
Melatonin , Neoplasms , Animals , Chick Embryo , Humans , Vascular Endothelial Growth Factor A/metabolism , Chorioallantoic Membrane/metabolism , Melatonin/therapeutic use , Vascular Endothelial Growth Factors/metabolism , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/metabolism , Endothelial Cells , Angiogenesis Inducing Agents/pharmacology , Human Umbilical Vein Endothelial Cells , Neoplasms/drug therapy
12.
Microvasc Res ; 145: 104446, 2023 01.
Article in English | MEDLINE | ID: mdl-36270418

ABSTRACT

Hypertrophic scar (HS) is a fibroproliferative disorder that causes cosmetic as well as functional problems; however, to our knowledge, there is no satisfactory treatment for HS to date. Previous studies have indicated that angiogenesis plays a crucial role in HS formation; therefore, anti-angiogenetic therapies are considered effective in improving HS. Although tacrolimus (TAC) has been proven effective in preventing HS formation in vivo and in vitro, its underlying mechanism remains controversial and ambiguous. Because of its anti-angiogenic effects in other diseases, we aimed to determine whether TAC reduces HS by suppressing angiogenesis. Using a rabbit ear HS model that we developed, HS was treated once a week with normal saline, dimethyl sulfoxide, or TAC for 3 weeks. Histological evaluation indicated that TAC significantly reduced collagen deposition and microvessel density in scar tissues. Moreover, immunofluorescence staining for CD31 and vascular endothelial growth factor (VEGF)-A revealed that TAC significantly inhibited HS angiogenesis. In vitro analysis showed that TAC inhibited endothelial cell migration and tubulogenesis as well as the viability and proliferation of human umbilical vascular endothelial cells (HUVECs) and HS fibroblasts (HSFBs). Furthermore, TAC significantly downregulated the expression of the human angiogenetic factors VEGF-A, FGF-2, PDGF-ß, and TGF-ß1 in HUVECs and HSFBs. Additionally, TAC-mediated inhibition of angiogenesis decreased the gene expression of crucial fibrotic markers, including α- smooth muscle actin and collagens 1 and 3, in HSFBs. This is the first study to demonstrate the inhibitory effects of TAC on HS formation mediated by a mechanism involving the suppression of scar angiogenesis.


Subject(s)
Cicatrix, Hypertrophic , Animals , Humans , Rabbits , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/prevention & control , Cicatrix, Hypertrophic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tacrolimus/pharmacology , Tacrolimus/metabolism , Endothelial Cells/metabolism , Angiogenesis Inducing Agents/pharmacology , Fibroblasts/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology
13.
Int J Biol Macromol ; 222(Pt B): 2028-2040, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36209909

ABSTRACT

Four fractions of polysaccharides (TPP-1, TPP-2, TPP-3, and TPP-4) were isolated and purified from the pollen of Typha angustifolia L., and the structure of TPP-3 was furtherly determined by HPGPC (High Performance Gel Permeation Chromatography), monosaccharide composition analysis, methylation analysis and NMR (Nuclear Magnetic Resonance). TPP-3 was found to be a homogeneous heteropolysaccharide with an average molecular weight of 5.5 × 104 Da and composed of eight types of monosaccharides. The pro-angiogenic activities of TPP-3 were verified on HUVECs and VEGFR tyrosine kinase inhibitor II (VRI)-induced vascular defect zebrafish model. Furthermore, the underlying mechanism investigation showed that its pro-angiogenic activities were closely related with the activation of VEGF/PI3K/Akt signaling pathway.


Subject(s)
Typhaceae , Zebrafish , Animals , Zebrafish/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Angiogenesis Inducing Agents/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis , Pollen/chemistry
14.
Biomed Res Int ; 2022: 8082608, 2022.
Article in English | MEDLINE | ID: mdl-36177059

ABSTRACT

Background: Osteosarcoma, the most frequent osteogenic malignancy, has become a serious public health challenge due to its high morbidity rates and metastatic potential. Recently, the neurokinin-1 receptor (NK-1R) is proved to be a promising target in cancer therapy. This study is aimed at determining the effect of aprepitant, a safe and Food and Drug Administration (FDA) approved NK-1R antagonist, on osteosarcoma cell migration and metastasis, and to explore its underlying mechanism of action. Methods: Colorimetric MTT assay was employed to assess cell viability and cytotoxicity. A wound-healing assay was used to examine migration ability. The desired genes' protein and mRNA expression levels were measured by western blot assay and quantitative real-time PCR (qRT-PCR), respectively. Gelatinase activity was also measured by zymography. Results: We found that aprepitant inhibited MG-63 osteosarcoma cell viability in a dose-dependent manner. We also observed that aprepitant inhibited the migrative phenotype of osteosarcoma cells and reduced the expression levels and activities of matrix metalloproteinases (MMP-2 and MMP-9). Aprepitant also reduced the expression of an angiogenic factor, VEGF protein, and NF-κB as an important transcriptional regulator of metastasis-related genes. Conclusion: Collectively, our observations indicate that aprepitant modulates the metastatic behavior of human osteosarcoma cells, which may be applied to an effective therapeutic approach for patients with metastatic osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Angiogenesis Inducing Agents/pharmacology , Aprepitant/pharmacology , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Osteosarcoma/pathology , RNA, Messenger/genetics , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
15.
Alcohol Clin Exp Res ; 46(11): 1953-1966, 2022 11.
Article in English | MEDLINE | ID: mdl-36109176

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) occur in children who were exposed to alcohol in utero and are manifested in a wide range of neurocognitive deficits. These deficits could be caused by alterations to the cortical microvasculature that are controlled by post-transcriptional regulators such as microRNAs. METHODS: Using an established mouse model of moderate prenatal alcohol exposure (PAE), we isolated cortices (CTX) and brain microvascular endothelial cells (BMVECs) at embryonic day 18 (E18) and examined the expression of miR-150-5p and potential downstream targets. Cellular transfections and intrauterine injections with LNA™ mimics or inhibitors were used to test miR-150-5p regulation of novel target vascular endothelial zinc finger 1 (Vezf1). Dual-luciferase assays were used to assess the direct binding of miR-150-5p to the Vezf1 3'UTR. The effects of miR-150-5p and Vezf1 on endothelial cell function were determined by in vitro migration and tube formation assays. RESULTS: We found that miR-150-5p was upregulated and Vezf1 was downregulated during PAE in the E18 CTX and BMVECs. Transfection with miR-150-5p mimics resulted in decreased Vezf1 expression in BMVECs, while miR-150-5p inhibition did the opposite. Dual-luciferase assays revealed direct binding of miR-150-5p with the Vezf1 3'UTR. Intrauterine injections showed that miR-150-5p regulates the expression of Vezf1 in vivo during PAE. miR-150-5p overexpression decreased BMVEC migration and tube formation, while miR-150-5p inhibition enhanced migration and tube formation. Vezf1 overexpression rescued the effects of the miR-150-5p mimic. Alcohol treatment of BMVECs increased miR-150-5p expression and inhibited migration and tube formation. Finally, miR-150-5p inhibition and Vezf1 overexpression rescued the negative effects of alcohol on migration and tube formation. CONCLUSIONS: miR-150-5p regulation of Vezf1 results in altered endothelial cell function during alcohol exposure. Further, miR-150-5p inhibition of Vezf1 may adversely alter the development of the cortical microvasculature during PAE and contribute to deficits seen in patients with FASD.


Subject(s)
Fetal Alcohol Spectrum Disorders , MicroRNAs , Prenatal Exposure Delayed Effects , Humans , Animals , Mice , Female , Pregnancy , Angiogenesis Inducing Agents/metabolism , Angiogenesis Inducing Agents/pharmacology , 3' Untranslated Regions , Endothelial Cells/physiology , Neovascularization, Physiologic/physiology , Fetal Alcohol Spectrum Disorders/metabolism , Prenatal Exposure Delayed Effects/metabolism , MicroRNAs/metabolism , Brain/metabolism , Microvessels , Luciferases/metabolism , Luciferases/pharmacology , Cell Proliferation , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
16.
Sci Rep ; 12(1): 12694, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882889

ABSTRACT

The retinal pigment epithelium (RPE) is a polarized monolayer that secretes growth factors and cytokines towards the retina apically and the choroid basolaterally. Numerous RPE secreted proteins have been linked to the pathogenesis of age-related macular degeneration (AMD). The purpose of this study was to determine the differential apical and basolateral secretome of RPE cells, and the effects of oxidative stress on directional secretion of proteins linked to AMD and angiogenesis. Tandem mass tag spectrometry was used to profile proteins in human iPSC-RPE apical and basolateral conditioned media. Changes in secretion after oxidative stress induced by H2O2 or tert-butyl hydroperoxide (tBH) were investigated by ELISA and western analysis. Out of 926 differentially secreted proteins, 890 (96%) were more apical. Oxidative stress altered the secretion of multiple factors implicated in AMD and neovascularization and promoted a pro-angiogenic microenvironment by increasing the secretion of pro-angiogenic molecules (VEGF, PTN, and CRYAB) and decreasing the secretion of anti-angiogenic molecules (PEDF and CFH). Apical secretion was impacted more than basolateral for PEDF, CRYAB and CFH, while basolateral secretion was impacted more for VEGF, which may have implications for choroidal neovascularization. This study lays a foundation for investigations of dysfunctional RPE polarized protein secretion in AMD and other chorioretinal degenerative disorders.


Subject(s)
Induced Pluripotent Stem Cells , Macular Degeneration , Angiogenesis Inducing Agents/pharmacology , Cells, Cultured , Humans , Hydrogen Peroxide/metabolism , Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/pathology , Oxidative Stress , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/metabolism
17.
J Ethnopharmacol ; 295: 115399, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35649495

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Du-Zhong-Wan (DZW) is a traditional Chinese medicine (TCM) composed of Eucommia ulmoides Oliv. and Dipsacus asper Wall. ex C.B. Clarke in the ratio 1:1. Based on the TCM theory, DZW nourishes the kidney to strengthen the bones. The literature research revealed that DZW possesses anti-fatigue, anti-depressant, and anti-osteoporotic properties. However, the action and mechanism of DZW on osteoporotic fracture remains slightly unclear. AIM OF THE STUDY: To evaluate the pharmacological effect of DZW on ovariectomized mice with an open femoral fracture and reveal the underlying mechanism. MATERIALS AND METHODS: We conducted ovariectomy for 5 weeks, followed by unilateral open transverse femoral fracture for another 3 weeks in C57BL/6 mice; during this process, DZW was administrated. The femur bone and vertebra tissues were collected and analyzed by micro-computed tomography, histomorphometry, mechanical strength testing, immunohistochemistry staining, and qRT-PCR analyses. In addition, alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were performed to determine the extent of osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs). Western blotting was performed to examine the protein expression. RESULTS: DZW treatment significantly improved the bone histomorphometric parameters in mice undergoing ovariectomy when combined with the femoral fracture, including an increase in the bone volume, trabecular number, and bone formation rate and a decrease in the bone erosion area. Simultaneously, DZW treatment histologically promoted fractured callus formation. Mechanical strength testing revealed significantly higher stiffness and an ultimate load after treatment with DZW. The angiogenesis of H-type vessels was enhanced by DZW, as evidenced by increased levels of CD31 and endomucin (EMCN), the H-type vessel endothelium markers, at the fractured endosteum and metaphysis regions. Relative to the osteoporotic fracture mice, the DZW treatment group showed an increased proangiogenic factor SLIT3 level. The increased level of SLIT3 was also recorded during the process of DZW-stimulated osteoblastogenesis from BMSCs. CONCLUSIONS: For the first time, we demonstrated that DZW promoted osteoporotic fracture healing by enhancing osteoblastogenesis and angiogenesis of the H-type vessels. This enhanced combination of osteoblastogenesis and angiogenesis was possibly related to the production of proangiogenic factor SLIT3 induced by DZW.


Subject(s)
Eucommiaceae , Femoral Fractures , Osteoporotic Fractures , Angiogenesis Inducing Agents/pharmacology , Animals , Drugs, Chinese Herbal , Eucommiaceae/chemistry , Female , Femoral Fractures/diagnostic imaging , Femoral Fractures/drug therapy , Fracture Healing , Humans , Membrane Proteins , Mice , Mice, Inbred C57BL , Ovariectomy , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
18.
Drug Dev Res ; 83(5): 1226-1237, 2022 08.
Article in English | MEDLINE | ID: mdl-35662099

ABSTRACT

Limb ischemia occurs due to obstruction of blood perfusion to lower limbs, a manifestation that is associated with peripheral artery disease (PAD). Angiogenesis is important for adequate oxygen delivery. The present study investigated a potential role for chrysin, a naturally occurring flavonoid, in promoting angiogenesis in hindlimb ischemia (HLI) rat model. Rats were allocated into four groups: (1) sham-operated control, (2) HLI: subjected to unilateral femoral artery ligation, (3) HLI + chrysin: received 100 mg/kg, i.p. chrysin immediately after HLI, and (4) HLI + chrysin + rapamycin: received 6 mg/kg/day rapamycin i.p. for 5 days then subjected to HLI and dosed with 100 mg/kg chrysin, i.p. Rats were killed 18 h later and gastrocnemius muscles were collected and divided into parts for (1) immunohistochemistry detection of CD31 and CD105, (2) qRT-PCR analysis of eNOS and VEGFR2, (3) colorimetric analysis of NO, (4) ELISA estimation of TGF-ß, VEGF, ATG5 and Beclin-1, and (5) Western blot analysis of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and HIF-1α. Chrysin significantly enhanced microvessels growth in HLI muscles as indicated by increased CD31 and CD105 levels and decreased TGF-ß. Chrysin's proangiogenic effect is potentially mediated by increased VEGF, VEGFR2 and activation of PI3K/AKT/mTOR pathway, which promoted eNOS and NO levels as it was reversed by the mTOR inhibitor, rapamycin. Chrysin also inhibited autophagy as it decreased ATG5 and Beclin-1. The current study shows that chrysin possesses a proangiogenic effect in HLI rats and might be useful in patients with PAD.


Subject(s)
Angiogenesis Inducing Agents , Arterial Occlusive Diseases , Autophagy , Flavonoids , Signal Transduction , Angiogenesis Inducing Agents/pharmacology , Animals , Beclin-1/pharmacology , Flavonoids/pharmacology , Hindlimb/blood supply , Hindlimb/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta , Vascular Endothelial Growth Factor A/metabolism
19.
Ann Biomed Eng ; 50(8): 898-913, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35525871

ABSTRACT

The reconstruction of large skeletal defects is still a tricky challenge in orthopedics. The newly formed bone tissue migrates sluggishly from the periphery to the center of the scaffold due to the restrictions of exchange of oxygen and nutrition impotent cells osteogenic differentiation. Angiogenesis plays an important role in bone reconstruction and more and more studies on angiogenesis in bone tissue engineering had been published. Promising advances of angiogenesis in bone tissue engineering by scaffold designs, angiogenic factor delivery, in vivo prevascularization and in vitro prevascularization are discussed in detail. Among all the angiogenesis mode, angiogenic factor delivery is the common methods of angiogenesis in bone tissue engineering and possible research directions in the future.


Subject(s)
Osteogenesis , Tissue Engineering , Angiogenesis Inducing Agents/pharmacology , Bone Regeneration , Bone and Bones , Cell Differentiation , Humans , Neovascularization, Pathologic , Neovascularization, Physiologic , Tissue Engineering/methods , Tissue Scaffolds
20.
Article in English | MEDLINE | ID: mdl-35490598

ABSTRACT

The interest on the endocannabinoid system (ECS) in human reproduction has grown due to its involvement in placenta development, which led to growing concerns over pregnant cannabis consumer's impact on pregnancy outcome. The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) modulate placental trophoblast proliferation and apoptosis. However, their role on other placentation events such as angiogenesis and invasion are unknown. Using the human extravillous trophoblast HTR-8/SVneo cells, a well-accepted model of first trimester extravillous trophoblast (EVT), this study aims to investigate whether AEA and 2-AG can modulate the expression of angiogenesis- and invasion-related factors. Transcript analysis of angiogenic factors of the vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP) protein family demonstrated the ability of AEA to increase VEGF-C and VEGFR3 expression via cannabinoid receptors CB1 and CB2 while the placental growth factor (PlGF) was increased through CB1. Moreover, an increase in VEGFR1, sFLT1, VEGFR2, MMP-2 and TIMP-1 independent of cannabinoid receptor activation was verified. However, 2-AG only increased PlGF transcript through CB1/CB2 activation. Both endocannabinoids stimulated HTR8/SVneo endothelial-like tube formation. As for the wound healing assay, only 2-AG was able to increase the percentage of wound closure. Moreover, the data demonstrated that both AEA and 2-AG, via cannabinoid receptors, activated the STAT3 signaling pathway. Distinct effects were observed on transcription factor HIF-1α and AKT phosphorylation that decreased with both endocannabinoids. Although different angiogenic and migration factors are affected the results obtained in this work showcase once more the ability of the endocannabinoids to modulate key processes in placental physiology.


Subject(s)
Endocannabinoids , Vascular Endothelial Growth Factor Receptor-1 , Angiogenesis Inducing Agents/metabolism , Angiogenesis Inducing Agents/pharmacology , Arachidonic Acids , Cell Movement , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Female , Glycerides , Humans , Placenta/metabolism , Placenta Growth Factor/genetics , Placenta Growth Factor/metabolism , Placentation , Polyunsaturated Alkamides , Pregnancy , Receptors, Cannabinoid/metabolism , Trophoblasts/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...