Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.113
Filter
1.
Eur Radiol Exp ; 8(1): 68, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844683

ABSTRACT

BACKGROUND: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is a largely adopted non-invasive technique for assessing cerebrovascular diseases. We aimed to optimize the 7-T TOF-MRA acquisition protocol, confirm that it outperforms conventional 3-T TOF-MRA, and compare 7-T TOF-MRA with digital subtraction angiography (DSA) in patients with different vascular pathologies. METHODS: Seven-tesla TOF-MRA sequences with different spatial resolutions acquired in four healthy subjects were compared with 3-T TOF-MRA for signal-to-noise and contrast-to-noise ratios as well as using a qualitative scale for vessel visibility and the quantitative Canny algorithm. Four patients with cerebrovascular disease (primary arteritis of the central nervous system, saccular aneurism, arteriovenous malformation, and dural arteriovenous fistula) underwent optimized 7-T TOF-MRA and DSA as reference. Images were compared visually and using the complex-wavelet structural similarity index. RESULTS: Contrast-to-noise ratio was higher at 7 T (4.5 ± 0.8 (mean ± standard deviation)) than at 3 T (2.7 ± 0.9). The mean quality score for all intracranial vessels was higher at 7 T (2.89) than at 3 T (2.28). Angiogram quality demonstrated a better vessel border detection at 7 T than at 3 T (44,166 versus 28,720 pixels). Of 32 parameters used for diagnosing cerebrovascular diseases on DSA, 27 (84%) were detected on 7-T TOF-MRA; the similarity index ranged from 0.52 (dural arteriovenous fistula) to 0.90 (saccular aneurysm). CONCLUSIONS: Seven-tesla TOF-MRA outperformed conventional 3-T TOF-MRA in evaluating intracranial vessels and exhibited an excellent image quality when compared to DSA. Seven-tesla TOF-MRA might improve the non-invasive diagnostic approach to several cerebrovascular diseases. RELEVANCE STATEMENT: An optimized TOF-MRA sequence at 7 T outperforms 3-T TOF-MRA, opening perspectives to its clinical use for noninvasive diagnosis of paradigmatic pathologies of intracranial vessels. KEY POINTS: • An optimized 7-T TOF-MRA protocol was selected for comparison with clinical 3-T TOF-MRA for assessing intracranial vessels. • Seven-tesla TOF-MRA outperformed 3-T TOF-MRA in both quantitative and qualitative evaluation. • Seven-tesla TOF-MRA is comparable to DSA for the diagnosis and characterization of intracranial vascular pathologies.


Subject(s)
Angiography, Digital Subtraction , Cerebrovascular Disorders , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Male , Female , Middle Aged , Cerebrovascular Disorders/diagnostic imaging , Adult , Angiography, Digital Subtraction/methods , Aged , Signal-To-Noise Ratio , Imaging, Three-Dimensional/methods
2.
Korean J Radiol ; 25(6): 575-588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807339

ABSTRACT

OBJECTIVE: Differentiating intracranial aneurysms from normal variants using CT angiography (CTA) or MR angiography (MRA) poses significant challenges. This study aimed to evaluate the efficacy of proton-density MRA (PD-MRA) compared to high-resolution time-of-flight MRA (HR-MRA) in diagnosing aneurysms among patients with indeterminate findings on conventional CTA or MRA. MATERIALS AND METHODS: In this retrospective analysis, we included patients who underwent both PD-MRA and HR-MRA from August 2020 to July 2022 to assess lesions deemed indeterminate on prior conventional CTA or MRA examinations. Three experienced neuroradiologists independently reviewed the lesions using HR-MRA and PD-MRA with reconstructed voxel sizes of 0.253 mm3 or 0.23 mm3, respectively. A neurointerventionist established the gold standard with digital subtraction angiography. We compared the performance of HR-MRA, PD-MRA (0.253-mm3 voxel), and PD-MRA (0.23-mm3 voxel) in diagnosing aneurysms, both per lesion and per patient. The Fleiss kappa statistic was used to calculate inter-reader agreement. RESULTS: The study involved 109 patients (average age 57.4 ± 11.0 years; male:female ratio, 11:98) with 141 indeterminate lesions. Of these, 78 lesions (55.3%) in 69 patients were confirmed as aneurysms by the reference standard. PD-MRA (0.253-mm3 voxel) exhibited significantly higher per-lesion diagnostic performance compared to HR-MRA across all three readers: sensitivity ranged from 87.2%-91.0% versus 66.7%-70.5%; specificity from 93.7%-96.8% versus 58.7%-68.3%; and accuracy from 90.8%-92.9% versus 63.8%-69.5% (P ≤ 0.003). Furthermore, PD-MRA (0.253-mm3 voxel) demonstrated significantly superior per-patient specificity and accuracy compared to HR-MRA across all evaluators (P ≤ 0.013). The diagnostic accuracy of PD-MRA (0.23-mm3 voxel) surpassed that of HR-MRA and was comparable to PD-MRA (0.253-mm3 voxel). The kappa values for inter-reader agreements were significantly higher in PD-MRA (0.820-0.938) than in HR-MRA (0.447-0.510). CONCLUSION: PD-MRA outperformed HR-MRA in diagnostic accuracy and demonstrated almost perfect inter-reader consistency in identifying intracranial aneurysms among patients with lesions initially indeterminate on CTA or MRA.


Subject(s)
Intracranial Aneurysm , Magnetic Resonance Angiography , Humans , Intracranial Aneurysm/diagnostic imaging , Male , Female , Middle Aged , Magnetic Resonance Angiography/methods , Retrospective Studies , Aged , Adult , Sensitivity and Specificity , Angiography, Digital Subtraction/methods , Computed Tomography Angiography/methods , Cerebral Angiography/methods
3.
Comput Med Imaging Graph ; 115: 102393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704993

ABSTRACT

Accurate segmentation of cerebrovascular structures from Computed Tomography Angiography (CTA), Magnetic Resonance Angiography (MRA), and Digital Subtraction Angiography (DSA) is crucial for clinical diagnosis of cranial vascular diseases. Recent advancements in deep Convolution Neural Network (CNN) have significantly improved the segmentation process. However, training segmentation networks for all modalities requires extensive data labeling for each modality, which is often expensive and time-consuming. To circumvent this limitation, we introduce an approach to train cross-modality cerebrovascular segmentation network based on paired data from source and target domains. Our approach involves training a universal vessel segmentation network with manually labeled source domain data, which automatically produces initial labels for target domain training images. We improve the initial labels of target domain training images by fusing paired images, which are then used to refine the target domain segmentation network. A series of experimental arrangements is presented to assess the efficacy of our method in various practical application scenarios. The experiments conducted on an MRA-CTA dataset and a DSA-CTA dataset demonstrate that the proposed method is effective for cross-modality cerebrovascular segmentation and achieves state-of-the-art performance.


Subject(s)
Angiography, Digital Subtraction , Computed Tomography Angiography , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Angiography, Digital Subtraction/methods , Computed Tomography Angiography/methods , Neural Networks, Computer , Cerebrovascular Disorders/diagnostic imaging , Image Processing, Computer-Assisted/methods
4.
Comput Med Imaging Graph ; 115: 102392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714020

ABSTRACT

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.


Subject(s)
Angiography, Digital Subtraction , Cerebral Arteries , Cerebral Veins , Humans , Angiography, Digital Subtraction/methods , Cerebral Veins/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Angiography/methods
5.
Medicina (Kaunas) ; 60(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38793019

ABSTRACT

Background and objective: carotid artery stenosis contributes significantly to ischemic strokes, with management options including carotid endarterectomy (CEA) and carotid artery stenting (CAS) ischemic stroke risk can be reduced. Controversies persist regarding their efficacy and factors influencing complications, and understanding the relationship between atherosclerotic plaque characteristics and stent restenosis after CAS is crucial. Methods: we conducted a retrospective study involving 221 patients who underwent CAS for symptomatic or asymptomatic carotid artery stenosis. Comprehensive assessments of plaque morphology were performed using contrast-enhanced ultrasound (CEUS) before CAS. Patient demographics, including smoking status and diabetes, were also recorded. Stent restenosis was diagnosed using various imaging modalities, including ultrasound, angiography, and digital subtraction angiography (DSA). Results: plaque analysis using CEUS revealed a significant association between plaque grade and restenosis incidence (p < 0.001), particularly with grade 0 (11.1%) and grade 2 plaques (66.7%). Smoking was notably associated with plaque vascularization and restenosis (p < 0.001), while diabetes did not significantly impact plaque characteristics or restenosis risk (p > 0.05). The mean duration of restenosis was 17.67 months. Stenting was the most frequent treatment modality for restenosis (70.6%). However, no significant relationship was found between restenosis type and plaque morphology (p = 0.268). Furthermore, while no clear relationship was observed between plaque morphology and the type of restenosis, our findings underscored the importance of plaque characterization in predicting post-CAS outcomes. Conclusions: this study highlights the utility of CEUS in predicting stent restenosis following CAS. There was a significant association between stent restenosis within 12-24 months after the carotid stenting procedure and an elevated grade of plaque vascularization. Moreover, one of the main factors possibly determining the grade of plaque vascularization was smoking. Further research is warranted to elucidate the underlying mechanisms and refine risk stratification in this patient population.


Subject(s)
Carotid Stenosis , Contrast Media , Plaque, Atherosclerotic , Stents , Ultrasonography , Humans , Retrospective Studies , Male , Female , Aged , Stents/adverse effects , Carotid Stenosis/surgery , Carotid Stenosis/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Middle Aged , Ultrasonography/methods , Carotid Arteries/diagnostic imaging , Carotid Arteries/surgery , Angiography, Digital Subtraction/methods , Aged, 80 and over , Risk Factors
6.
Neuroimaging Clin N Am ; 34(2): 261-270, 2024 May.
Article in English | MEDLINE | ID: mdl-38604710

ABSTRACT

Cerebrovascular surgery has many intraoperative imaging modalities available. Modern technologies include intraoperative digital subtraction angiogram, indocyanine green (ICG) angiography, relative fluorescent measurement with ICG, and ultrasound. Each of these can be used effectively in the treatment of open aneurysm and arteriovenous malformation surgeries, in addition to arteriovenous fistula surgery, and cerebral bypass surgery.


Subject(s)
Indocyanine Green , Neurosurgery , Humans , Angiography, Digital Subtraction/methods , Cerebral Angiography/methods , Neurosurgical Procedures/methods
7.
Neuroradiology ; 66(6): 963-971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613702

ABSTRACT

PURPOSE: Few studies have investigated the influence of posture on the external jugular and diploic venous systems in the head and cranial region. In this study, we aimed to investigate the effects of posture on these systems using upright computed tomography (CT) scanning. METHODS: This study retrospectively analysed an upright CT dataset from a previous prospective study. In each patient, the diameters of the vessels in three external jugular tributaries and four diploic veins were measured using CT digital subtraction venography in both supine and sitting positions. RESULTS: Amongst the 20 cases in the original dataset, we eventually investigated 19 cases due to motion artifacts in 1 case. Compared with the supine position, most of the external jugular tributaries collapsed, and the average size significantly decreased in the sitting position (decreased by 22-49% on average). In contrast, most of the diploic veins, except the occipital diploic veins, tended to increase or remain unchanged (increased by 12-101% on average) in size in the sitting position compared with the supine position. However, the changes in the veins associated with this positional shift were not uniform; in approximately 5-30% of the cases, depending on each vein, an opposite trend was observed. CONCLUSION: Compared to the supine position, the contribution of external jugular tributaries to head venous drainage decreased in the sitting position, whilst most diploic veins maintained their contribution. These results could enhance our understanding of the physiology and pathophysiology of the head region in upright and sitting positions.


Subject(s)
Angiography, Digital Subtraction , Jugular Veins , Humans , Female , Male , Jugular Veins/diagnostic imaging , Retrospective Studies , Middle Aged , Aged , Angiography, Digital Subtraction/methods , Adult , Patient Positioning/methods , Sitting Position , Supine Position , Cerebral Veins/diagnostic imaging , Posture/physiology , Aged, 80 and over , Tomography, X-Ray Computed/methods , Computed Tomography Angiography/methods
8.
Neuroradiology ; 66(7): 1203-1212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581636

ABSTRACT

PURPOSE: Endovascular treatment of direct carotid cavernous fistula (DCCF) requires invasive diagnostic cerebral angiography for diagnosis and planning; however, a less invasive modality like magnetic resonance angiography (MRA) can be useful, especially in high-risk cases. This single-centre study evaluated a newer MR angiography (MRA) sequence, silent MRA and the traditional time of flight (TOF) MRA for pre-procedural treatment planning of DCCF. METHODS: All consecutive DCCF patients who underwent TOF, silent MRA and diagnostic cerebral angiography were included in the study. Angiographic features like rent size, location, draining veins and collateral communicating arteries were analysed and compared between the two MRA sequences, with digital subtraction angiography (DSA) as the gold standard. RESULTS: Fifteen patients were included in the study. TOF MRA exhibited better sensitivity (76.9% vs 69.2%) in identifying the rent location, correctly pinpointing the location in 93.3% compared to 73.3% with silent MRA. Both MRA sequences showed good agreement with DSA for primary sac and rent size. TOF MRA correctly identified 86.2% of 210 total venous structures compared to 96% by silent MRA. Silent MRA demonstrated higher sensitivity (90% vs 76%) and accuracy (87.69 vs 94.36) in visualisation of involved veins compared to TOF MRA. CONCLUSION: Arterial characteristics of DCCF like rent location and rent size were better assessed by TOF MRA. Although both MRA identified venous features, silent MRA correlated better with DSA irrespective of the size and proximity to the site of the fistula. Combining both sequences can evaluate various angioarchitectural features of DCCF useful for therapeutic planning.


Subject(s)
Angiography, Digital Subtraction , Carotid-Cavernous Sinus Fistula , Magnetic Resonance Angiography , Sensitivity and Specificity , Humans , Male , Magnetic Resonance Angiography/methods , Female , Carotid-Cavernous Sinus Fistula/diagnostic imaging , Middle Aged , Angiography, Digital Subtraction/methods , Adult , Aged , Cerebral Angiography/methods , Retrospective Studies
9.
Photodiagnosis Photodyn Ther ; 46: 104082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588872

ABSTRACT

PURPOSE: To investigate the alterations in retinochoroidal parameters measured by optical coherence tomography (OCT) and OCT angiography (OCTA) in patients with carotid artery stenosis (CAS) and assess their associations with digital subtraction angiography (DSA) data. METHOD: This study enrolled patients diagnosed with CAS and age-matched healthy controls. Both groups underwent OCT and OCTA examinations. DSA and assessment of carotid artery stenosis were performed only in the CAS group. The study evaluated various retinochoroidal parameters from OCT and OCTA, including linear vessel density (LVD), foveal avascular zone (FAZ), choroidal thickness (ChT), and retinal nerve fiber layer (RNFL) thickness. DSA-derived measures included cervical segment (C1) diameter, cavernous segment (C4) diameter, stenosis percentage, ophthalmic artery (OA) filling time, C1-OA filling time, and residual stenosis. RESULTS: A total of 42 eyes from 30 CAS patients and 60 eyes from 30 healthy controls were included. Patients with CAS displayed significantly decreased LVD compared to controls (p < 0.001). Additionally, the CAS group had thinner choroid and RNFL (p = 0.047 and p < 0.001, respectively). Macular LVD negatively correlated with both stenosis percentage and C1-OA filling time (p = 0.010 and p = 0.014, respectively). In patients who underwent carotid artery stenting, preoperative ChT significantly correlated with residual stenosis (Pearson r = -0.480, p = 0.020). CONCLUSION: OCT and OCTA provide a quantitative assessment of retinochoroidal microstructural changes associated with CAS, suggesting potential for noninvasive evaluation of the disease. This might contribute to the prevention of irreversible ocular complications and early detection of CAS. Furthermore, ChT may not only aid in diagnosing CAS more reliably but also offer prognostic information.


Subject(s)
Carotid Stenosis , Choroid , Microvessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Carotid Stenosis/diagnostic imaging , Female , Male , Aged , Choroid/blood supply , Choroid/diagnostic imaging , Choroid/pathology , Middle Aged , Microvessels/diagnostic imaging , Angiography, Digital Subtraction/methods , Case-Control Studies , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology
10.
Stroke ; 55(4): 1025-1031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527154

ABSTRACT

BACKGROUND: To differentiate between pseudo occlusion (PO) and true occlusion (TO) of internal carotid artery (ICA) is important in thrombectomy treatment planning for patients with acute ischemic stroke. Although delayed contrast filling has been differentiated carotid PO from TO, its application has been limited by the implementations of multiphasic computed tomography angiography. In this study, we hypothesized that carotid ring sign, which is readily acquired from single-phasic CTA, can sufficiently differentiate carotid TO from PO. METHODS: One thousand four hundred and twenty patients with anterior circulation stroke receiving endovascular therapy were consecutively recruited through a hospital- and web-based registry. Two hundred patients with nonvisualization of the proximal ICA were included in the analysis after a retrospective screening. Diagnosis of PO or TO of the cervical segment of ICA was made based on digital subtraction angiography. Diagnostic performances of carotid ring sign on arterial-phasic CTA and delayed contrast filling on multiphasic computed tomography angiography were evaluated and compared. RESULTS: One-hundred twelve patients had ICA PO and 88 had TO. Carotid ring sign was more common in patients with TO (70.5% versus 6.3%; P<0.001), whereas delayed contrast filling was more common in PO (94.9% versus 7.7%; P<0.001). The sensitivity and specificity of carotid ring sign in diagnosing carotid TO were 0.70 and 0.94, respectively, whereas sensitivity and specificity of delayed contrast filling was 0.95 and 0.92 in judging carotid PO. CONCLUSIONS: Carotid ring sign is a potent imaging marker in diagnosing ICA TO. Carotid ring sign could be complementary to delayed contrast filling sign in differentiating TO from PO, in particular in centers with only single-phasic CTA.


Subject(s)
Carotid Artery Diseases , Carotid Stenosis , Ischemic Stroke , Stroke , Humans , Computed Tomography Angiography/methods , Retrospective Studies , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/surgery , Stroke/diagnostic imaging , Tomography, X-Ray Computed , Angiography, Digital Subtraction/methods
11.
No Shinkei Geka ; 52(2): 380-388, 2024 Mar.
Article in Japanese | MEDLINE | ID: mdl-38514128

ABSTRACT

Surgical extirpation of brain arteriovenous malformations(AVMs)requires precise pre-surgical simulation. Utilizing image software, widely used with picture archiving and communication systems(PACS), surgeons can generate simulation images that precisely illustrate the proper feeders, passing arteries, and drainers. The crucial steps for creating informative simulation images include: (1)the free rotation of reconstructed 3D digital subtraction angiography(DSA)images; (2)removal of irrelevant arteries(the most important procedure); and(3)construction of stereo imagery of the "core images." This article presents a detailed description of these procedures.


Subject(s)
Intracranial Arteriovenous Malformations , Humans , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/surgery , Imaging, Three-Dimensional/methods , Angiography, Digital Subtraction/methods , Arteries , Brain/diagnostic imaging
12.
Neurosurg Focus ; 56(3): E10, 2024 03.
Article in English | MEDLINE | ID: mdl-38428010

ABSTRACT

OBJECTIVE: Spinal dural arteriovenous fistulas (SDAVFs) often go undiagnosed, leading to irreversible spinal cord dysfunction. Although digital subtraction angiography (DSA) is the gold standard for diagnosing SDAVF, DSA is invasive and operator dependent, with associated risks. MR angiography (MRA) is a promising alternative. This study aimed to evaluate the performance of MRA as an equal alternative to DSA in investigating, diagnosing, and localizing SDAVF. METHODS: Prospectively collected data from a single neurosurgeon at a large tertiary academic center were searched for SDAVFs. Eligibility criteria included any patient with a surgically proven SDAVF in whom preoperative DSA, MRA, or both had been obtained. The eligible patients formed a consecutive series, in which they were divided into DSA and MRA groups. DSA and MRA were the index tests that were compared to the surgical SDAVF outcome, which was the reference standard. Accurate diagnosis was considered to have occurred when the imaging report matched the operative diagnosis to the correct spinal level. Comparisons used a two-sample t-test for continuous variables and Fisher-Freeman-Halton's exact test for categorical variables, with p < 0.05 specifying significance. Univariate, bivariate, and multivariate analyses were conducted to investigate group associations with DSA and MRA accuracy. Positive predictive value, sensitivity, and accuracy were calculated. RESULTS: A total of 27 patients with a mean age of 63 years underwent surgery for SDAVF. There were 19 male (70.4%) and 8 female (29.6%) patients, and the mean duration of symptoms at the time of surgery was 14 months (range 2-48 months). Seventeen patients (63%) presented with bowel or bladder incontinence. Bivariate analysis of the DSA and MRA groups further revealed no significant relationships between the characteristics and accuracy of SDAVF diagnosis. MRA was found to be more sensitive and accurate (100% and 73.3%) than DSA (85.7% and 69.2%), with a subanalysis of the patients with both preoperative MRA and DSA showing that MRA had a greater positive predictive value (78.6 vs 72.7), sensitivity (100 vs 72.7), and accuracy (78.6 vs 57.1) than DSA. CONCLUSIONS: In surgically proven cases of SDAVFs, the authors determined that MRA was more accurate than DSA for SDAVF diagnosis and localization to the corresponding vertebral level. Incomplete catheterization at each vertebral level may result in the failure of DSA to detect SDAVF.


Subject(s)
Central Nervous System Vascular Malformations , Magnetic Resonance Angiography , Humans , Male , Female , Middle Aged , Magnetic Resonance Angiography/methods , Angiography, Digital Subtraction/methods , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/surgery , Spinal Cord/diagnostic imaging , Spinal Cord/surgery , Predictive Value of Tests
13.
Neuroradiology ; 66(7): 1131-1140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492021

ABSTRACT

PURPOSE: Vessel-encoded arterial spin labeling (VE-ASL) is able to provide noninvasive information about the contribution of individual arteries to the cerebral perfusion. The aim of this study was to compare VE-ASL to the diagnostic standard digital subtraction angiography (DSA) with respect to its ability to visualize vascular territories. METHODS: In total, 20 VE-ASL and DSA data sets of 17 patients with Moyamoya angiopathy with and without revascularization surgery were retrospectively analyzed. Two neuroradiologists independently assessed the agreement between VE-ASL and DSA using a 4-point Likert scale (no- very high agreement). Additionally, grading of the vascular supply of subterritories (A1-A2, M1-M6) on the VE-ASL images and angiograms was performed. The intermodal agreement was calculated for all subterritories in total and for the subdivision into without and after revascularization (direct or indirect bypass). RESULTS: There was a very high agreement between the VE-ASL and the DSA data sets (median = 1, modus = 1) with a substantial inter-rater agreement (kw = 0.762 (95% CI 0.561-0.963)). The inter-modality agreement between VE-ASL and DSA in vascular subterritories was almost perfect for all subterritories (k = 0.899 (0.865-0.945)), in the subgroup of direct revascularized subterritories (k = 0.827 (0.738-0.915)), in the subgroup of indirect revascularized subterritories (k = 0.843 (0.683-1.003)), and in the subgroup of never revascularized subterritories (k = 0.958 (0.899-1.017)). CONCLUSION: Vessel-encoded ASL seems to be a promising non-invasive method to depict the contributions of individual arteries to the cerebral perfusion before and after revascularization surgery.


Subject(s)
Angiography, Digital Subtraction , Cerebrovascular Circulation , Moyamoya Disease , Spin Labels , Humans , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Angiography, Digital Subtraction/methods , Female , Male , Adult , Middle Aged , Retrospective Studies , Cerebral Angiography/methods , Cerebral Arteries/diagnostic imaging , Adolescent , Child , Magnetic Resonance Angiography/methods , Reproducibility of Results
14.
Br J Radiol ; 97(1156): 838-843, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38379411

ABSTRACT

OBJECTIVES: To evaluate the clinical value of using a split-bolus contrast injection protocol in improving image quality consistency and diagnostic accuracy in lower extremity CT angiography (CTA). METHODS: Fifty (mean age, 66 ± 12 years) and 39 (mean age, 66 ± 11 years) patients underwent CTA in the lower extremity arteries using split-bolus and fixed-bolus injection schemes, respectively. The objective and subjective image quality of the 2 groups were compared and the diagnostic efficacy for the degree of vessel stenosis was compared using digital subtraction angiography as the gold standard. A P < .05 was considered statistically significant. RESULTS: In comparison with the fixed-bolus scheme, the split-bolus scheme greatly improved the consistency of image quality of the low extremities by significantly increasing the arterial enhancement (337.87 ± 64.67HU vs. 254.74 ± 71.58HU, P < .001), signal-to-noise ratio (22.58 ± 11.64 vs. 7.14 ± 1.98, P < .001), and contrast-to-noise ratio (37.21 ± 10.46 vs. 31.10 ± 15.40, P = .041) in the infrapopliteal segment. The subjective image quality was better (P < .001) and the diagnostic accuracy was higher in the split-bolus group than in the fixed-bolus group (96.00% vs. 91.67%, P < .05, for diagnosing >50% stenosis, and 97.00% vs. 89.10%, P < .05, for diagnosing occlusion) for the infrapopliteal segment arteries. CONCLUSIONS: Compared with the fixed-bolus injection scheme, the split-bolus injection scheme improves the image quality consistency and diagnostic accuracy especially for the infrapopliteal segment arteries in lower extremity CTA. ADVANCES IN KNOWLEDGE: (1) The split-bolus injection scheme of CTA of the lower extremity arteries improves the overall image quality, uniformity of contrast enhancement. (2) Compared with the fixed-bolus injection scheme, the split-bolus injection scheme especially improves the infrapopliteal segment arteries image quality and diagnostic efficacy.


Subject(s)
Arteries , Computed Tomography Angiography , Humans , Middle Aged , Aged , Computed Tomography Angiography/methods , Constriction, Pathologic , Angiography, Digital Subtraction/methods , Arteries/diagnostic imaging , Lower Extremity/diagnostic imaging , Lower Extremity/blood supply , Contrast Media
15.
Br J Radiol ; 97(1154): 386-391, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38302092

ABSTRACT

OBJECTIVE: To explore the feasibility of using marking and fusion image-guided technique with cone-beam CT (CBCT) in cases of kidney ruptured haemorrhage without extravascular leakage in digital subtraction angiography (DSA) images. METHODS: This is a retrospective case-control study that included 43 patients who underwent transcatheter arterial embolization for kidney ruptured haemorrhage and difficult haemostasis. The patients were divided into two groups: the CBCT group (cases without extravascular leakage observed in angiography) and the control group (cases with clearly identifiable target vessels in angiography). The baseline characteristics and clinical outcomes were collected and analysed. RESULTS: The results showed no statistically significant differences in the duration of the procedure and intraoperative blood transfusion between the control and CBCT groups (P > .05). The study clarified that the CBCT group had a significantly higher rate of improvement of gross haematuria compared to the control group (P < .05). The CBCT group showed a greater increase in haemoglobin and a lesser increase in creatinine. The clinical success rates were 87.5% in the control group and 90.9% in the CBCT group (P > .05). CONCLUSIONS: The marking and fusion image-guided technique is useful in cases of kidney ruptured haemorrhage without extravascular leakage of contrast agent. The technique is safe, feasible, and effective, and we believe it is superior to purely DSA-guidance. ADVANCES IN KNOWLEDGE: The use of the marking and fusion image-guided technique is recommended to overcome the challenge of undetectable target vessels during interventional procedures. This technique is considered as non-inferior to purely DSA-guided interventional procedures where the target vessels are clearly identifiable.


Subject(s)
Hemorrhage , Kidney , Humans , Pilot Projects , Retrospective Studies , Case-Control Studies , Angiography, Digital Subtraction/methods , Hemorrhage/diagnostic imaging , Cone-Beam Computed Tomography/methods
16.
Comput Biol Med ; 171: 107987, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350395

ABSTRACT

OBJECTIVE: Alignment between preoperative images (high-resolution magnetic resonance imaging, magnetic resonance angiography) and intraoperative medical images (digital subtraction angiography) is currently required in neurointerventional surgery. Treating a lesion is usually guided by a 2D DSA silhouette image. DSA silhouette images increase procedure time and radiation exposure time due to the lack of anatomical information, but information from MRA images can be utilized to compensate for this in order to improve procedure efficiency. In this paper, we abstract this into the problem of relative pose and correspondence between a 3D point and its 2D projection. Multimodal images have a large amount of noise and anomalies that are difficult to resolve using conventional methods. According to our research, there are fewer multimodal fusion methods to perform the full procedure. APPROACH: Therefore, the paper introduces a registration pipeline for multimodal images with fused dual views is presented. Deep learning methods are introduced to accomplish feature extraction of multimodal images to automate the process. Besides, the paper proposes a registration method based on the Factor of Maximum Bounds (FMB). The key insights are to relax the constraints on the lower bound, enhance the constraints on the upper bounds, and mine more local consensus information in the point set using a second perspective to generate accurate pose estimation. MAIN RESULTS: Compared to existing 2D/3D point set registration methods, this method utilizes a different problem formulation, searches the rotation and translation space more efficiently, and improves registration speed. SIGNIFICANCE: Experiments with synthesized and real data show that the proposed method was achieved in accuracy, robustness, and time efficiency.


Subject(s)
Magnetic Resonance Angiography , Magnetic Resonance Imaging , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Angiography, Digital Subtraction/methods , Imaging, Three-Dimensional/methods , Algorithms
17.
Eur Radiol Exp ; 8(1): 25, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38361025

ABSTRACT

BACKGROUND: Digital subtraction angiography (DSA) yields high cumulative radiation dosages (RD) delivered to patients. We present a temporal interpolation of low frame rate angiograms as a method to reduce cumulative RDs. METHODS: Patients undergoing interventional evaluation and treatment of cerebrovascular vasospasm following subarachnoid hemorrhage were retrospectively identified. DSAs containing pre- and post-intervention runs capturing the full arterial, capillary, and venous phases with at least 16 frames each were selected. Frame rate reduction (FRR) of the original DSAs was performed to 50%, 66%, and 75% of the original frame rate. Missing frames were regenerated by sampling a gamma variate model (GVM) fit to the contrast response curves to the reduced data. A formal reader study was performed to assess the diagnostic accuracy of the "synthetic" studies (sDSA) compared to the original DSA. RESULTS: Thirty-eight studies met inclusion criteria (average RD 1,361.9 mGy). Seven were excluded for differing views, magnifications, or motion. GVMs fit to 50%, 66%, and 75% FRR studies demonstrated average voxel errors of 2.0 ± 2.5% (mean ± standard deviation), 6.5 ± 1.5%, and 27 ± 2%, respectively for anteroposterior projections, 2.0 ± 2.2%, 15.0 ± 3.1%, and 14.8 ± 13.0% for lateral projections, respectively. Reconstructions took 0.51 s/study. Reader studies demonstrated an average rating of 12.8 (95% CI 12.3-13.3) for 75% FRR, 12.7 (12.2-13.2) for 66% FRR and 12.0 (11.5-12.5) for 50% FRR using Subjective Image Grading Scale. Kendall's coefficient of concordance resulted in W = 0.506. CONCLUSION: FRR by 75% combined with GVM reconstruction does not compromise diagnostic quality for the assessment of cerebral vasculature. RELEVANCE STATEMENT: Using this novel algorithm, it is possible to reduce the frame rate of DSA by as much as 75%, with a proportional reduction in radiation exposure, without degrading imaging quality. KEY POINTS: • DSA delivers some of the highest doses of radiation to patients. • Frame rate reduction (FRR) was combined with bolus tracking to interpolate intermediate frames. • This technique provided a 75% FRR with preservation of diagnostic utility as graded by a formal reader study for cerebral angiography performed for the evaluation of cerebral vasospasm. • This approach can be applied to other types of angiography studies.


Subject(s)
Radiation Exposure , Humans , Angiography, Digital Subtraction/methods , Retrospective Studies , Cerebral Angiography/methods , Radiation Dosage
18.
AJNR Am J Neuroradiol ; 45(3): 351-357, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38360787

ABSTRACT

BACKGROUND AND PURPOSE: Accurate pretreatment diagnosis and assessment of spinal vascular malformations using spinal CTA are crucial for patient prognosis, but the postprocessing reconstruction may not be able to fully depict the lesions due to the complexity inherent in spinal anatomy. Our purpose was to explore the application value of the spinal subtraction and bone background fusion CTA (SSBBF-CTA) technique in precisely depicting and localizing spinal vascular malformation lesions. MATERIALS AND METHODS: In this retrospective study, patients (between November 2017 and November 2022) with symptoms similar to those of spinal vascular malformations were divided into diseased (group A) and nondiseased (group B) groups. All patients underwent spinal CTA using Siemens dual-source CT. Multiplanar reconstruction; routine bone subtraction, and SSBBF-CTA images were obtained using the snygo.via and ADW4.6 postprocessing reconstruction workstations. Multiple observers researched the following 3 aspects: 1) preliminary screening capability using original images with multiplanar reconstruction CTA, 2) the accuracy and stability of the SSBBF-CTA postprocessing technique, and 3) diagnostic evaluation of spinal vascular malformations using the 3 types of postprocessing images. Diagnostic performance was analyzed using receiver operating characteristic analysis, while reader or image differences were analyzed using the Wilcoxon signed-rank test or the Kruskal-Wallis rank sum test. RESULTS: Forty-nine patients (groups A and B: 22 and 27 patients; mean ages, 44.0 [SD, 14.3] years and 44.6 [SD,15.2] years; 13 and 16 men) were evaluated. Junior physicians showed lower diagnostic accuracy and sensitivity using multiplanar reconstruction CTA (85.7% and 77.3%) than senior physicians (93.9% and 90.9%, 98% and 95.5%). Short-term trained juniors achieved SSBBF-CTA image accuracy similar to that of experienced physicians (P > .05). In terms of the visualization and localization of spinal vascular malformation lesions (nidus/fistula, feeding artery, and drainage vein), both multiplanar reconstruction and SSBBF-CTA outperformed routine bone subtraction CTA (P = .000). Compared with multiplanar reconstruction, SSBBF-CTA allowed less experienced physicians to achieve superior diagnostic capabilities (comparable with those of experienced radiologists) more rapidly (P < .05). CONCLUSIONS: The SSBBF-CTA technique exhibited excellent reproducibility and enabled accurate pretreatment diagnosis and assessment of spinal vascular malformations with high diagnostic efficiency, particularly for junior radiologists.


Subject(s)
Vascular Diseases , Vascular Malformations , Male , Humans , Adult , Angiography, Digital Subtraction/methods , Retrospective Studies , Reproducibility of Results , Tomography, X-Ray Computed/methods , Sensitivity and Specificity
19.
J Stroke Cerebrovasc Dis ; 33(3): 107575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232582

ABSTRACT

AIM: This study aimed to evaluate the feasibility of transcranial color-coded sonography (TCCS) and contrast-enhanced ultrasound (CEUS) in assessing middle cerebral artery (MCA) stem stenosis or occlusion compared to digital subtraction angiography (DSA). METHODS: A total of 48 cases including 96 MCAs suspected stem stenosis or obstruction in the MCA were assessed by TCCS, CE-TCCS, and DSA. The diameters of the most severe stenosis (Ds), proximal normal artery (Dn), and diameter stenosis rate of MCA were measured using both the color doppler flow imaging (CDFI) modality of TCCS or CEUS and the CEUS imaging modality. The intraclass correlation coefficients (ICCs) and 95 % confidence intervals (CI) were evaluated, and a weighted Kappa value was used to evaluate the intra-observer agreement, inter-observer agreement, agreement between CDFI modality and DSA stenosis or occlusion, and agreement between CEUS imaging modality and DSA stenosis or occlusion. RESULTS: The ICC results indicated excellent repeatability and reproducibility (all ICCs > 0.75; weighted Kappa values >0.81). Compared with DSA, the weighted Kappa values and 95 % CIs of stenosis (the first measurement was taken by two observers) of CDFI modality and CEUS imaging modality were 0.175 (0.041, 0.308) and 0.779 (0.570, 0.988) for observers A and 0.181 (0.046, 0.316) and 0.779 (0.570, 0.988) for observers B respectively. CONCLUSION: This study indicates that inter- and intra-observer agreements were good for the direct method of measuring percentages of MCA stenosis by TCCS and CEUS. CEUS imaging modality is a new and reliable imaging modality approach to evaluate the MCAs stenosis and occlusion.


Subject(s)
Cerebrovascular Disorders , Middle Cerebral Artery , Humans , Middle Cerebral Artery/diagnostic imaging , Constriction, Pathologic , Angiography, Digital Subtraction/methods , Reproducibility of Results , Feasibility Studies , Ultrasonography, Doppler, Transcranial/methods , Sensitivity and Specificity
20.
Eur Radiol ; 34(2): 833-841, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37580600

ABSTRACT

OBJECTIVE: This study aimed to compare the efficacy of enhanced 3D T1-weighted black-blood fast-spin-echo vessel wall magnetic resonance imaging (eVW-MRI) and time-of-flight magnetic resonance angiography (TOF MRA) for follow-up evaluation of aneurysms treated with flow diversion (FD). METHODS: Our study enrolled 77 patients harboring 84 aneurysms treated with FD. Follow-up was by MRI (eVW-MRI and TOF MRA) and digital subtraction angiography (DSA). Two radiologists, blinded to DSA examination results, independently evaluated the images of aneurysm occlusion and parent artery patency using the Kamran-Byrne Scale. Interobserver diagnostic agreement and intermodality diagnostic agreement were acquired. Pretreatment and follow-up aneurysm wall enhancement (AWE) patterns were collected. RESULTS: Based on the Kamran-Byrne Scale, the intermodality agreement between eVW-MRI and DSA was better than TOF MRA versus DSA for aneurysm remnant detection (weighted ĸ = 0.891 v. 0.553) and parent artery patency (ĸ = 0.950 v. 0.221). Even with the coil artifact, the consistency of eVW-MRI with DSA for aneurysm remnant detection was better than that of TOF MRA (weighted ĸ = 0.891 v. 0.511). The artifact of adjunctive coils might be more likely to affect the accuracy in evaluating parent artery patency with TOF MRA than with eVW-MRI (ĸ = 0.077 v. 0.788). The follow-up AWE patterns were not significantly associated with pretreatment AWE patterns and aneurysm occlusion. CONCLUSIONS: The eVW-MRI outperforms TOF MRA as a reliable noninvasive and nonionizing radioactive imaging method for evaluating aneurysm remnants and parent artery patency after FD. The significance of enhancement patterns on eVW-MRI sequences needs more exploration. CLINICAL RELEVANCE STATEMENT: The application of enhanced vessel wall magnetic resonance imaging has proven to be a promising tool to depict aneurysm remnant and parent artery stenosis in order to tailor the antiplatelet therapy strategy in patients after flow diversion. KEY POINTS: • Enhanced vessel wall magnetic resonance imaging has an emerging role in depicting aneurysm remnant and parent artery patency after flow diversion. • With or without the artifact from adjunctive coils, enhanced vessel wall magnetic resonance imaging was better than TOF MRA in detecting aneurysm residual and parent artery stenosis by using DSA imaging as the standard. • Enhanced vessel wall magnetic resonance imaging holds potential to be used as an alternative to DSA for routine aneurysm follow-up after flow diversion.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Follow-Up Studies , Treatment Outcome , Constriction, Pathologic/therapy , Embolization, Therapeutic/methods , Magnetic Resonance Imaging , Magnetic Resonance Angiography/methods , Angiography, Digital Subtraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...