Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 96(6): e0202621, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107375

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV) continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW domain-containing host interactors via its conserved PPxY late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ, and WWOX. In addition to host WW domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 virus-like particles (VLPs) and recombinant vesicular stomatitis virus (VSV) M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY-WW domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola virus [EBOV] and Marburg virus [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the filovirus matrix protein VP40 to regulate VP40-mediated egress of virus-like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus life cycle and the host cell.


Subject(s)
Ebolavirus , Marburgvirus , WW Domain-Containing Oxidoreductase , Angiomotins/metabolism , Ebolavirus/physiology , Humans , Marburgvirus/metabolism , Viral Matrix Proteins/metabolism , Virus Release/physiology , WW Domain-Containing Oxidoreductase/metabolism
2.
Cell Rep ; 36(8): 109616, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433061

ABSTRACT

Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.


Subject(s)
Cytoskeleton/metabolism , Fibronectins/metabolism , Integrins/metabolism , Neovascularization, Physiologic/physiology , Angiomotins/metabolism , Animals , Cell Membrane/metabolism , Cell Movement/physiology , Endothelium/metabolism , Mice, Transgenic , Plasma Substitutes/pharmacology , Pseudopodia/metabolism
3.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: mdl-34404733

ABSTRACT

Contact inhibition is a key cellular phenomenon that prevents cells from hyper-proliferating upon reaching confluence. Although not fully characterized, a critical driver of this process is the Hippo signaling pathway, whose downstream effector yes-associated protein plays pivotal roles in cell growth and differentiation. Here, we provide evidence that the E3 ligase WWP1 (WW-domain containing protein 1) mono-ubiquitinates AMOTL2 (angiomotin-like 2) at K347 and K408. Mono-ubiquitinated AMOTL2, in turn, interacts with the kinase LATS2, which facilitates recruitment of the upstream Hippo pathway component SAV1 and ultimately promotes yes-associated protein phosphorylation and subsequent cytoplasmic sequestration and/or degradation. Furthermore, contact inhibition induced by high cell density promoted the localization and stabilization of WWP1 at cell junctions, where it interacted with Crumbs polarity proteins. Notably, the Crumbs complex was functionally important for AMOTL2 mono-ubiquitination and LATS activation under high cell density conditions. These findings delineate a functionally important molecular mechanism in which AMOTL2 mono-ubiquitination by WWP1 at cell junctions and LATS activation are tightly coupled to upstream cell density cues.


Subject(s)
Angiomotins/metabolism , Contact Inhibition , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Angiomotins/genetics , Contact Inhibition/genetics , Enzyme Activation , Humans , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Transport , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
J Biol Chem ; 297(2): 100975, 2021 08.
Article in English | MEDLINE | ID: mdl-34284061

ABSTRACT

Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1-NEDD4L WW3 interaction accounts for most of the AMOT-NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW-PPxY core interaction account for the unusually high affinity of the AMOT PPxY1-NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.


Subject(s)
Angiomotins/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Virus Assembly , Amino Acid Motifs , Cell Line , Endosomal Sorting Complexes Required for Transport/metabolism , HIV Infections/pathology , HIV Infections/transmission , HIV Infections/virology , HIV-1/isolation & purification , HIV-1/pathogenicity , Humans , Protein Domains
5.
Sci Rep ; 11(1): 5752, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707576

ABSTRACT

Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Angiomotins/metabolism , Breast Neoplasms/prevention & control , Carcinogenesis/pathology , Cell Adhesion Molecules/metabolism , Guanylate Kinases/metabolism , Signal Transduction , Stress, Physiological , p38 Mitogen-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Carcinogenesis/metabolism , Cell Adhesion Molecules/deficiency , Cell Line, Tumor , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Guanylate Kinases/deficiency , Humans , Phenotype , Protein Binding , YAP-Signaling Proteins/metabolism , beta Catenin/metabolism , rho-Associated Kinases/metabolism
6.
J Bioenerg Biomembr ; 53(3): 295-305, 2021 06.
Article in English | MEDLINE | ID: mdl-33712992

ABSTRACT

Lung cancer, the most concerning malignancy worldwide and one of the leading causes of cancer-related deaths. Growing evidence indicates that Angiomotin (Amot)-p130 plays an important role in types of cancer, including breast cancer and gastric cancer. Moreover, evidence suggested that the low Amot-p130 expression correlates with the poor prognosis of lung cancer patients, however, the role and mechanism of Amot-p130 in lung cancer is still unclear. In this study, we showed that Amot-p130 expression was reduced in lung cancer tissues, compared with the adjacent para-carcinoma tissues. In addition, we observed that the reduced expression of Amot-p130 was associated with vasculogenic mimicry (VM) channels formation in lung cancer tissues. Amot-p130 expression was differently expression in lung cancer cell line H446, H1688 and H2227 compared with the normal human lung cells HFL1. To clarify the role of Amot-p130 in lung cancer, we constructed the Amot-p130 expressing H446 cells and Amot-p130 silencing H1299 cells. We confirmed that Amot-p130 overexpression inhibited the migration and invasion of lung cancer cells, whereas its silence promoted cell migration and invasion. Interestingly, we also found that Amot-p130 overexpression suppressed VM tube formation in H446 cells, while its knockdown promoted VM tube formation in H2227 cells. Further studies suggested that Amot-p130 plays roles in M tube formation of lung cancer cell V are independent on smad2/3 signaling pathway. Finally, inoculation of Amot-p130 expressing H446 cells and Amot-p130 silencing H1299 cells into nude mice suppressed tumor growth, when compared with the control group. Based on these results, Amot-p130 serves as a possible diagnostic and therapeutic target in lung cancer patients, and may be an effective mediator of VM formation in lung cancer.


Subject(s)
Angiomotins/metabolism , Lung Neoplasms/genetics , Smad2 Protein/metabolism , Small Cell Lung Carcinoma/genetics , Animals , Humans , Lung Neoplasms/pathology , Mice , Mice, Nude , Signal Transduction , Small Cell Lung Carcinoma/pathology , Transfection , Xenograft Model Antitumor Assays
7.
Cancer Gene Ther ; 28(10-11): 1125-1135, 2021 11.
Article in English | MEDLINE | ID: mdl-33414519

ABSTRACT

Angiomotin (AMOT) is a membrane protein that is aberrantly expressed in a variety of solid tumors. Accumulating evidence support that AMOT is involved in the pathological processes of tumor proliferation, apoptosis, and invasion. However, the potential role of AMOT in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains elusive. In the present study, we investigated the expression level and biological function of AMOT in DLBCL. AMOT expression was significantly reduced in DLBCL biopsy section, and low AMOT expression was associated with poor clinical prognosis. Overexpression of AMOT by lentivirus in human DLBCL cells induced cell viability inhibition concomitant with an increased percentage of cells in G1 phase and decreased percentage in S phase. Moreover, AMOT upregulation increased the sensitivity of DLBCL cells to doxorubicin. Furthermore, overexpression of AMOT led to reduced activation of key kinases for the DNA damage response (DDR). The above results indicated that AMOT acts as a tumor suppressor via inhibition of the DDR, thus reducing the viability while increasing the chemosensitivity in DLBCL. In summary, AMOT may be a novel potential target for DLBCL therapeutic intervention.


Subject(s)
Angiomotins/metabolism , DNA Damage/genetics , Gene Expression Regulation, Neoplastic/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Apoptosis , Cell Line, Tumor , Down-Regulation , Female , Humans , Male , Middle Aged , Signal Transduction , Transfection
8.
Cell Death Differ ; 28(4): 1193-1207, 2021 04.
Article in English | MEDLINE | ID: mdl-33116297

ABSTRACT

The tight regulation of cytoskeleton dynamics is required for a number of cellular processes, including migration, division and differentiation. YAP-TEAD respond to cell-cell interaction and to substrate mechanics and, among their downstream effects, prompt focal adhesion (FA) gene transcription, thus contributing to FA-cytoskeleton stability. This activity is key to the definition of adult cell mechanical properties and function. Its regulation and role in pluripotent stem cells are poorly understood. Human PSCs display a sustained basal YAP-driven transcriptional activity despite they grow in very dense colonies, indicating these cells are insensitive to contact inhibition. PSC inability to perceive cell-cell interactions can be restored by tampering with Tankyrase enzyme, thus favouring AMOT inhibition of YAP function. YAP-TEAD complex is promptly inactivated when germ layers are specified, and this event is needed to adjust PSC mechanical properties in response to physiological substrate stiffness. By providing evidence that YAP-TEAD1 complex targets key genes encoding for proteins involved in cytoskeleton dynamics, we suggest that substrate mechanics can direct PSC specification by influencing cytoskeleton arrangement and intracellular tension. We propose an aberrant activation of YAP-TEAD1 axis alters PSC potency by inhibiting cytoskeleton dynamics, thus paralyzing the changes in shape requested for the acquisition of the given phenotype.


Subject(s)
Cytoskeleton/metabolism , Human Embryonic Stem Cells/metabolism , TEA Domain Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing , Angiomotins/metabolism , Cell Differentiation , Cell Line , Humans , Mesoderm/metabolism , Protein Binding , Signal Transduction , TEA Domain Transcription Factors/genetics , YAP-Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...