Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.596
Filter
1.
Vet Res ; 55(1): 71, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822398

ABSTRACT

In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed. Our results showed BCG-SARS-CoV-2 challenged mice presented higher viral loads in the brain and an increased frequency of neuroinvasion, with the greatest differences observed between groups at 3-4 days post-infection (dpi). Histopathological examination showed a higher severity of brain lesions in BCG-SARS-CoV-2 challenged mice, mainly consisting of neuroinflammation, increased glial cell population and neuronal degeneration, from 5 dpi onwards. This group also presented higher interstitial pneumonia and vascular thrombosis in lungs (3-4 dpi), BCG-SARS-CoV-2 mice showed higher values for TNF-α and D-dimer values, while iNOS values were higher in SARS-CoV-2 mice at 3-4 dpi. Results presented in this study indicate that BCG stimulation could have intensified the inflammatory and neurodegenerative lesions promoting virus neuroinvasion and dissemination in this experimental model. Although k18-hACE2 mice show higher hACE2 expression and neurodissemination, this study suggests that, although the benefits of BCG on enhancing heterologous protection against pathogens and tumour cells have been broadly demonstrated, potential adverse outcomes due to the non-specific effects of BCG should be considered.


Subject(s)
BCG Vaccine , Brain , COVID-19 , SARS-CoV-2 , Animals , Mice , BCG Vaccine/administration & dosage , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/physiology , Brain/pathology , Brain/virology , Viral Load , Lung/pathology , Lung/virology , Lung/immunology , Angiotensin-Converting Enzyme 2/metabolism , Mice, Transgenic , Female
2.
Int J Nanomedicine ; 19: 4957-4976, 2024.
Article in English | MEDLINE | ID: mdl-38828198

ABSTRACT

Background: The "gut-islets axis" is an important endocrine signaling axis that regulates islets function by modulating the gut microbiota and endocrine metabolism within the gut. However, the specific mechanisms and roles of the intestine in islets regulation remain unclear. Recent studies investigated that exosomes derived from gut microbiota can transport signals to remotely regulate islets ß-cell function, suggesting the possibility of novel signaling pathways mediated by gut exosomes in the regulation of the "gut-islet axis.". Methods: The exosomes were isolated from the intestinal enteroendocrine cell-line STC-1cells culture supernatants treated with palmitate acid (PA) or BSA. Metabolic stress models were established by separately subjecting MIN6 cells to PA stimulation and feeding mice with a high-fat diet. Intervention with exosomes in vitro and in vivo to assess the biological effects of exosomes on islets ß cells under metabolic stress. The Mas receptor antagonist A779 and ACE2ko mice were used to evaluate the role of exosomal ACE2. Results: We found ACE2, a molecule that plays a crucial role in the regulation of islets function, is abundantly expressed in exosomes derived from STC-1 under physiological normal condition (NCEO). These exosomes cannot only be taken up by ß-cells in vitro but also selectively transported to the islets in vivo. Following intervention with NCEXO, both Min6 cells in a lipotoxic environment and mice on a high-fat diet exhibited significant improvements in islets ß-cell function and ß-cell mass. Further investigations demonstrated that these protective effects are attributed to exosomal ACE2, as ACE2 inhibits NLRP3 inflammasome activation and reduces ß-cell pyroptosis. Conclusion: ACE2-enriched exosomes from the gut can selectively target islets, subsequently inhibiting NLRP3 inflammasome activation and ß cell pyroptosis, thereby restoring islets ß cell function under metabolic stress. This study provides novel insights into therapeutic strategies for the prevention and treatment of obesity and diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2 , Exosomes , Inflammasomes , Insulin-Secreting Cells , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Exosomes/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Pyroptosis/drug effects , Pyroptosis/physiology , Angiotensin-Converting Enzyme 2/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Intestine, Small/drug effects , Male , Diet, High-Fat , Mice, Knockout , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism
3.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Article in English | MEDLINE | ID: mdl-38692871

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , COVID-19/virology , Cholesterol/metabolism , Vero Cells , Chlorocebus aethiops , Spike Glycoprotein, Coronavirus/metabolism , Animals , Virus Internalization/drug effects , Betacoronavirus/drug effects , Pandemics , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Angiotensin-Converting Enzyme 2/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology
4.
J Hypertens ; 42(6): 1101-1104, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690908

ABSTRACT

Isolated nocturnal hypertension (INHT), defined as nighttime elevated blood pressure (BP) with normal daytime BP assessed by ambulatory BP monitoring, is associated with higher cardiovascular morbidity and mortality. We hypothesized that an alteration in the circulating renin-angiotensin system (RAS) contributes to INHT development. We examined circulating levels of angiotensin (Ang) (1-7) and Ang II and ACE2 activity in 26 patients that met the INHT criteria, out of 50 that were referred for BP evaluation (62% women, 45 ±â€Š16 years old). Those with INHT were older, had a higher BMI, lower circulating Ang-(1-7) (P = 0.002) and Ang II levels (P = 0.02) and no change in ACE2 activity compared to those normotensives. Nighttime DBP was significantly correlated with Ang-(1-7) and Ang II levels. Logistic regression showed significant association in Ang-(1-7) and Ang II levels with INHT. Our study reveals differences in circulating RAS in individuals with INHT.


Subject(s)
Angiotensin II , Angiotensin I , Hypertension , Peptide Fragments , Humans , Angiotensin I/blood , Female , Male , Middle Aged , Peptide Fragments/blood , Hypertension/blood , Hypertension/physiopathology , Adult , Angiotensin II/blood , Renin-Angiotensin System/physiology , Circadian Rhythm , Blood Pressure , Angiotensin-Converting Enzyme 2/blood , Blood Pressure Monitoring, Ambulatory , Peptidyl-Dipeptidase A/blood
5.
Am J Reprod Immunol ; 91(5): e13861, 2024 May.
Article in English | MEDLINE | ID: mdl-38716765

ABSTRACT

BACKGROUND: Maternal-fetal immunology is intricate, and the effects of mRNA-S maternal vaccination on immune regulation at the maternal-fetal interface require further investigation. Our study endeavors to elucidate these immunological changes, enhancing our comprehension of maternal and fetal health outcomes. By analyzing immune profiles and cytokine responses, we aim to provide valuable insights into the impact of mRNA-S vaccination on the delicate balance of immune regulation during pregnancy, addressing critical questions in the field of reproductive pharmacology. OBJECTIVES: This investigation sought to examine the prospective influence of mRNA-S-based vaccines and extracellular vesicles (EVs) containing the Spike (S) protein at the maternal-fetal interface. Our primary emphasis was on evaluating their effects on maternal decidua cells and fetal chorion trophoblast cells (hFM-CTCs). METHODS: We validated the generation of EVs containing the S protein from small human airway epithelial cell lines (HSAECs) following mRNA-S vaccine exposure. We assessed the expression of angiotensin-converting enzyme 2 (ACE2) gene and protein in fetal membranes and the placenta, with specific attention to decidual cells and fetal membrane chorion cells. To assess cellular functionality, these cells were exposed to both recombinant S protein and EVs loaded with S proteins (eSPs). RESULTS: Our findings revealed that cells and EVs subjected to mRNA-S-based vaccination exhibited altered protein expression levels of S proteins. At the feto-maternal interface, both placental and fetal membrane tissues demonstrated similar ACE-2 expression levels. Among individual cellular layers, syncytiotrophoblast cells in the placenta and chorion cells in the fetal membrane exhibited elevated ACE-2 expression. Notably, EVs derived from HSAECs activated the MAPK pathway in decidual cells. Additionally, decidual cells displayed a substantial increase in gene expression of chemokines like CXCL-10 and CXCL-11, as well as proinflammatory cytokines such as IL-6 in response to eSPs. However, the levels of Ccl-2 and IL-1ß remained unchanged in decidual cells under the same conditions. Conversely, hFM-CTCs demonstrated significant alterations in the proinflammatory cytokines and chemokines with respect to eSPs. CONCLUSION: In conclusion, our study indicates that mRNA-S-based maternal vaccination during pregnancy may influence the maternal-fetal interface's COVID-19 interaction and immune regulation. Further investigation is warranted to assess safety and implications.


Subject(s)
Extracellular Vesicles , Trophoblasts , Humans , Female , Pregnancy , Trophoblasts/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Decidua/immunology , Spike Glycoprotein, Coronavirus/immunology , Cytokines/metabolism , Vaccination , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Maternal-Fetal Exchange , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Cell Line , COVID-19 Vaccines/immunology , RNA, Messenger/metabolism , RNA, Messenger/genetics
6.
J Immunol Methods ; 529: 113680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703946

ABSTRACT

AIM: Quality control testing of the vaccine for lot release is of paramount importance in public health. A recent pandemic caused by the SARS-CoV-2 virus brought together all spheres of vaccine to combat the virus. The scientific advancement in the development of vaccines facilitated the scientists to develop the vaccine against SARS-CoV-2 in a record time. Thus, these vaccines should be stringently monitored for their safety and efficacy as per the latest WHO and national regulatory guidelines, and quality control evaluation of the product should be done at national control laboratories before releasing the product into the market as it assures the quality and safety of the vaccine. METHODS: The SARS-CoV-2 exploited the ACE2 (Angiotensin Converting Enzyme 2) receptor, a surface protein on mammalian cells to gain entry into the host cells. The viral surface protein that interacted with the ACE2 receptor is the Spike protein of SARS-CoV-2. Thus, in the development of the vaccine and assessing its quality, the Spike protein of SARS-CoV-2 became an attractive immunodominant antigen. In National Institute of Biologicals, an apex body in the testing of biologicals in India, received the Adenovector (Adenovirus + vector) based COVID-19 vaccine, a finished product for quality evaluation. Due to the lack of a pharmacopeial monograph, the testing of the vaccine was done as per the manufacturer's specifications and methods. The routine assays of identification employed by the manufacturer do not reflect the expression of Spike protein which is required for the immune system to get activated. In this report, we showed the determination of Spike protein expression by immunoblotting and immunofluorescence for identification parameters in the quality testing of the COVID-19 vaccine. We determined the translation of the SARS-CoV-2 Spike gene cloned into an Adenovector. RESULTS: The results from these experiments indicated the expression of Spike protein upon infection of mammalian cells with viral particles suggested that the expression of immunodominant Spike protein of SARS-CoV-2 may be employed by quality control laboratories as a parameter for identification. CONCLUSION: The study suggested that the determination of the expression of Spike protein is pertinent to identifying the Adenovector based vaccines against COVID-19.


Subject(s)
COVID-19 Vaccines , Quality Control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , HEK293 Cells , Genetic Vectors , Adenoviridae/immunology , Adenoviridae/genetics , Animals
7.
Anal Chem ; 96(21): 8501-8509, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717985

ABSTRACT

Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.


Subject(s)
Cell Membrane , Cholesterol , Fluorescence Resonance Energy Transfer , SARS-CoV-2 , Sphingomyelins , Fluorescence Resonance Energy Transfer/methods , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Sphingomyelins/analysis , Sphingomyelins/metabolism , Cholesterol/analysis , Cholesterol/metabolism , Microscopy, Confocal/methods , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Biosensing Techniques/methods
8.
Virus Res ; 345: 199392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729218

ABSTRACT

SARS-CoV-2 evolves constantly with various novel mutations. Due to their enhanced infectivity, transmissibility and immune evasion, a comprehensive understanding of the association between these mutations and the respective functional changes is crucial. However, previous mutation studies of major SARS-CoV-2 variants remain limited. Here, we performed systematic analyses of full-length amino acids mutation, phylogenetic features, protein physicochemical properties, molecular dynamics and immune escape as well as pseudotype virus infection assays among thirteen major SARS-CoV-2 variants. We found that Omicron exhibited the most abundant and complex mutation sites, higher indices of hydrophobicity and flexibility than other variants. The results of molecular dynamics simulation suggest that Omicron has the highest number of hydrogen bonds and strongest binding free energy between the S protein and ACE2 receptor. Furthermore, we revealed 10 immune escape sites in 13 major variants, some of them were reported previously, but four of which (i.e. 339/373/477/496) are first reported to be specific to Omicron, whereas 462 is specific to Epslion. The infectivity of these variants was confirmed by the pseudotype virus infection assays. Our findings may help us understand the functional consequences of the mutations within various variants and the underlying mechanisms of the immune escapes conferred by the S proteins.


Subject(s)
COVID-19 , Immune Evasion , Molecular Dynamics Simulation , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/immunology , Humans , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Phylogeny , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Protein Binding , Hydrophobic and Hydrophilic Interactions
9.
Front Immunol ; 15: 1384516, 2024.
Article in English | MEDLINE | ID: mdl-38765009

ABSTRACT

Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. In the brain, no detectable viral RNA and minimal residential immune cell activation was observed in the surviving mice post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and gene expression levels associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent systemic T helper 1 prone cellular immune responses and strong sera neutralizing antibodies against Delta and Omicron variants months post-acute infection. Overall, our findings suggest that infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long-COVID patients and provides new insights into the role of systemic and brain residential immune factors in PASC pathogenesis.


Subject(s)
COVID-19 , Disease Models, Animal , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Animals , COVID-19/immunology , SARS-CoV-2/immunology , Mice , Humans , Brain/virology , Brain/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Female
10.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793638

ABSTRACT

Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mutation , SARS-CoV-2 , Vaccine Development , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology
11.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793666

ABSTRACT

SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.


Subject(s)
Angiotensin-Converting Enzyme 2 , Astrocytes , Blood-Brain Barrier , COVID-19 , Dipeptidyl Peptidase 4 , Pericytes , SARS-CoV-2 , Transcytosis , Virus Internalization , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Pericytes/virology , Pericytes/metabolism , COVID-19/virology , COVID-19/metabolism , Astrocytes/virology , Astrocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Brain/virology , Brain/metabolism , Endocytosis , Human Umbilical Vein Endothelial Cells/virology , Permeability
12.
Narra J ; 4(1): e319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798846

ABSTRACT

Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH3)2 derivative of darunavir, N(CH3)2 derivative of amprenavir and NCH3 derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH3 derivative of abacavir (-6.506 kJ/mol), NO2 derivative of didanosine (-6.877 kJ/mol), NCH3 derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , SARS-CoV-2/drug effects , Drug Repositioning , COVID-19 Drug Treatment , Models, Molecular , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pandemics
13.
FASEB J ; 38(10): e23656, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752523

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity is a major risk factor for the development of COVID-19. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2. The receptor-binding domain of the S1 subunit (S1-RBD protein) in the SARS-CoV-2 spike glycoprotein binds to ACE2 on host cells, through which the virus enters several organs, including the lungs. Considering these findings, recombinant ACE2 might be utilized as a decoy protein to attenuate SARS-CoV-2 infection. Here, we examined whether obesity increases ACE2 expression in the lungs and whether recombinant ACE2 administration diminishes the entry of S1-RBD protein into lung cells. We observed that high-fat diet-induced obesity promoted ACE2 expression in the lungs by increasing serum levels of LPS derived from the intestine. S1-RBD protein entered the lungs specifically through ACE2 expressed in host lungs and that the administration of recombinant ACE2 attenuated this entry. We conclude that obesity makes hosts susceptible to recombinant SARS-CoV-2 spike proteins due to elevated ACE2 expression in lungs, and this model of administering S1-RBD protein can be applied to new COVID-19 treatments.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Diet, High-Fat , Lung , Obesity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Diet, High-Fat/adverse effects , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Lung/metabolism , Lung/virology , SARS-CoV-2/metabolism , Obesity/metabolism , COVID-19/metabolism , COVID-19/virology , Mice, Inbred C57BL , Virus Internalization , Male , Humans , Mice, Obese , Recombinant Proteins/metabolism
14.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
15.
Front Immunol ; 15: 1383612, 2024.
Article in English | MEDLINE | ID: mdl-38742107

ABSTRACT

Introduction: SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods: Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results: While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion: Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Mice, Inbred C57BL , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Replication , Animals , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Humans , Disease Models, Animal , Gene Knock-In Techniques , Mice, Transgenic
16.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727309

ABSTRACT

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Subject(s)
Cholesterol , Endothelial Cells , Inflammation , Animals , Humans , Endothelial Cells/metabolism , Mice , Inflammation/pathology , Inflammation/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Arteries/metabolism , Arteries/pathology , Transcriptome/genetics , Aorta/metabolism , Aorta/pathology , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , I-kappa B Kinase/metabolism , Male , NF-kappa B/metabolism
17.
Rev Med Virol ; 34(3): e2543, 2024 May.
Article in English | MEDLINE | ID: mdl-38782605

ABSTRACT

COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.


Subject(s)
COVID-19 , Periodontal Diseases , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , Periodontal Diseases/virology , Periodontal Diseases/microbiology , Dysbiosis/microbiology , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Mouth/virology , Mouth/microbiology , Host-Pathogen Interactions/immunology , Post-Acute COVID-19 Syndrome
18.
Biomolecules ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785944

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly targets the upper respiratory tract. It gains entry by interacting with the host cell receptor angiotensin-converting enzyme 2 (ACE2) via its heavily glycosylated spike glycoprotein. SARS-CoV-2 can also affect the gastrointestinal tract. Given the significant role of glycosylation in the life cycle of proteins and the multisystem target of SARS-CoV-2, the role of glycosylation in the interaction of S1 with ACE2 in Caco-2 cells was investigated after modulation of their glycosylation patterns using N-butyldeoxynojirimycin (NB-DNJ) and 1-deoxymannojirimycin (dMM), in addition to mutant CHO cells harboring mutations at different stages of glycosylation. The data show a substantial reduction in the interactions between the altered glycosylation forms of S1 and ACE2 in the presence of NB-DNJ, while varied outcomes resulted from dMM treatment. These results highlight the promising effects of NB-DNJ and its potential use as an off-label drug to treat SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Caco-2 Cells , Angiotensin-Converting Enzyme 2/metabolism , Glycosylation , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Animals , CHO Cells , Cricetulus , Protein Transport , COVID-19/metabolism , COVID-19/virology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Protein Binding , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology
19.
World J Gastroenterol ; 30(18): 2391-2396, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764773

ABSTRACT

This editorial contains comments on the article by Zhao et al in print in the World Journal of Gastroenterology. The mechanisms responsible for hepatic fibrosis are also involved in cancerogenesis. Here, we recapitulated the complexity of the renin-angiotensin system, discussed the role of hepatic stellate cell (HSC) autophagy in liver fibrogenesis, and analyzed the possible implications in the development of hepatocarcinoma (HCC). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers definitively contribute to reducing hepatic fibrogenesis, whereas their involvement in HCC is more evident in experimental conditions than in human studies. Angiotensin-converting enzyme 2 (ACE2), and its product Angiotensin (Ang) 1-7, not only regulate HSC autophagy and liver fibrosis, but they also represent potential targets for unexplored applications in the field of HCC. Finally, ACE2 overexpression inhibits HSC autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. In this case, Ang 1-7 acts binding to the MasR, and its agonists could modulate this pathway. However, since AMPK utilizes different targets to suppress the mTOR downstream complex mTOR complex 1 effectively, we still need to unravel the entire pathway to identify other potential targets for the therapy of fibrosis and liver cancer.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin-Converting Enzyme 2 , Autophagy , Carcinoma, Hepatocellular , Hepatic Stellate Cells , Liver Cirrhosis , Liver Neoplasms , Renin-Angiotensin System , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Autophagy/drug effects , Hepatic Stellate Cells/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/enzymology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Angiotensin I/metabolism , Animals , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Liver/pathology , Liver/drug effects , Liver/metabolism
20.
Cell Rep Med ; 5(5): 101570, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38749422

ABSTRACT

While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Dopaminergic Neurons , Mice, Transgenic , Parkinson Disease , SARS-CoV-2 , Animals , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/virology , Humans , COVID-19/pathology , COVID-19/virology , Parkinson Disease/pathology , Parkinson Disease/virology , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Microglia/pathology , Microglia/metabolism , Microglia/virology , Human Embryonic Stem Cells/metabolism , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Brain/pathology , Brain/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...