Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim ; 47(1): 2-11, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23467487

ABSTRACT

The primary aim of this report is to assist scientists in selecting more reliable/suitable identification (ID) methods for their studies. This is especially true for genetically altered (GA) animals where individual identification is strictly necessary to link samples, research design and genotype. The aim of this Federation of European Laboratory Animal Science Associations working group was to provide an update of the methods used to identify rodents in different situations and to assess their implications for animal welfare. ID procedures are an indispensable prerequisite for conducting good science but the degree of invasiveness differs between the different methods; therefore, one needs to make a good ethical evaluation of the method chosen. Based on the scientific literature the advantages and disadvantages of various methods have been presented comprehensively and this report is intended as a practical guide for researchers. New upcoming methods have been included next to the traditional techniques. Ideally, an ID method should provide reliable identification, be technically easy to apply and not inflict adverse effects on animals while taking into account the type of research. There is no gold standard method because each situation is unique; however, more studies are needed to better evaluate ID systems and the desirable introduction of new and modern approaches will need to be assessed by detailed scientific evaluation.


Subject(s)
Animal Identification Systems/methods , Animal Welfare , Laboratory Animal Science/trends , Animal Identification Systems/ethics , Animal Identification Systems/instrumentation , Animals , Laboratory Animal Science/ethics , Mice , Rats , Research Design
3.
Nature ; 469(7329): 203-6, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21228875

ABSTRACT

In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 41% [corrected] fewer chicks and had a survival rate 16 percentage points [corrected] lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10 years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper-band data should be reconsidered.


Subject(s)
Animal Identification Systems , Artifacts , Climate Change/statistics & numerical data , Ecosystem , Spheniscidae/physiology , Animal Identification Systems/ethics , Animal Welfare/ethics , Animal Welfare/statistics & numerical data , Animals , Antarctic Regions , Female , Longitudinal Studies , Male , Oceans and Seas , Population Dynamics , Reproduction/physiology , Seawater/chemistry , Spheniscidae/growth & development , Survival Rate , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...