Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983844

ABSTRACT

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


Subject(s)
Evolution, Molecular , Phylogeny , Transcriptome , Venoms , Animal Structures/metabolism , Animals , Venoms/biosynthesis , Venoms/genetics
2.
J Struct Biol ; 213(4): 107810, 2021 12.
Article in English | MEDLINE | ID: mdl-34774752

ABSTRACT

Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.


Subject(s)
Animal Structures/metabolism , Biomineralization/physiology , Crustacea/metabolism , Minerals/metabolism , Animal Structures/chemistry , Animal Structures/ultrastructure , Animals , Calcium Carbonate/metabolism , Calcium Phosphates/metabolism , Crustacea/chemistry , Crustacea/ultrastructure , Decapoda/chemistry , Decapoda/metabolism , Decapoda/ultrastructure , Electron Probe Microanalysis/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Predatory Behavior/physiology , Spectrometry, X-Ray Emission/methods , Spectrum Analysis, Raman/methods
3.
Cells ; 10(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34831063

ABSTRACT

Due to the rapid decrease of Pinna nobilis populations during the previous decades, this bivalve species, endemic in the Mediterranean Sea, is characterized as 'critically endangered'. In addition to human pressures, various pathogen infections have resulted in extended reduction, even population extinction. While Haplosporidium pinnae is characterized as one of the major causative agents, mass mortalities have also been attributed to Mycobacterium sp. and Vibrio spp. Due to limited knowledge concerning the physiological response of infected P. nobilis specimens against various pathogens, this study's aim was to investigate to pathophysiological response of P. nobilis individuals, originating from mortality events in the Thermaikos Gulf and Lesvos and Limnos islands (Greece), and their correlation to different potential pathogens detected in the diseased animals. In isolated tissues, several cellular stress indicators of the heat shock and immune response, apoptosis and autophagy, were examined. Despite the complexity and limitations in the study of P. nobilis mortality events, the present investigation demonstrates the cumulative negative effect of co-infection additionally with H. pinnae in comparison to the non-presence of haplosporidian parasite. In addition, impacts of global climate change affecting physiological performance and immune responses result in more vulnerable populations in infectious diseases, a phenomenon which may intensify in the future.


Subject(s)
Bivalvia/physiology , Animal Structures/metabolism , Animals , Bivalvia/parasitology , Caspases/metabolism , Geography , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Haplosporida/physiology , Interleukin-6/metabolism , Mediterranean Region , Sequestosome-1 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism
4.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443676

ABSTRACT

Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription-quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.


Subject(s)
Black Widow Spider/chemistry , Egg Proteins/chemistry , Fibroins/chemistry , Amino Acid Sequence , Animal Structures/metabolism , Animals , Egg Proteins/genetics , Egg Proteins/metabolism , Female , Gene Expression Regulation , Ovum/metabolism , Ovum/ultrastructure , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tandem Mass Spectrometry
5.
Int J Mol Sci ; 22(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204154

ABSTRACT

Porphyrins are a widespread group of pigments in nature which are believed to contribute to shell colors in mollusks. Previous studies have provided candidate genes for porphyrin shell coloration, however, the linkage analysis between functional genes and porphyrin pigmentation remains unclear in mollusks. RNA interference is a powerful molecular tool for analyzing the loss of functions of genes in vivo and alter gene expression. In this study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as vectors to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs targeting specific genes involved in porphyrin synthesis. A strain of Crassostrea gigas with orange shell was used to target key haem pathway genes expression using the aforementioned approach. We show here that feeding the oysters with E. coli, containing dsRNA targeting pigmentation genes, can cause changes in the color of the newly deposited shell. For example, the RNAi knockdown of CgALAS and CgPBGD resulted in the loss of uroporphyrin pigmentation from the shell due to the accumulation of the pigment in the oyster's mantle. The study probed the crucial role of ALAS and PBGD genes potential functions of uroporphyrin production and shell color pigmentation in C. gigas.


Subject(s)
Crassostrea/metabolism , Eating/physiology , Pigmentation , Porphyrins/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , Animal Structures/metabolism , Animals , Crassostrea/genetics , Gene Expression Regulation , Phenotype , Plasmids/genetics , Transcription, Genetic
6.
Pol J Vet Sci ; 24(1): 127-133, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33847098

ABSTRACT

The purpose of the present work is to investigate the effect of dietary-supplemented artichoke (Cynara scolymus L.) on the mRNA expression of calbindin 1 (Calb1), osteopontin (Spp1), albumin (Alb) and CALB1 protein in the eggshell gland (ESG) of laying hens. A total of 80 ISA Brown hens (each at 40 weeks of age) were randomly divided into two groups: a control and a treated group. All poultry received 130 g/day of compound feed for laying hens but the treated hens' diet was also supplemented with 3g/kg of dried and milled artichoke (Cynara scolymus L.). The increase of the Ca content in blood of the treated hens was established. Significantly decrease of Spp1 mRNA transcripts was found in the eggshell gland of the treated hens, while the mRNA level of Alb was increased. The relative expression of Calb1 mRNA tended to increase in the treated group. The expression of calbindin protein in the cytoplasm of glandular cells of the shell gland was defined by immunohistochemical method. Very strong signals of calbindin were observed in the treated group. The supplementation of the laying hens' diet with dried artichoke (C. scolymus L.) led to a significant increase of Ca content in blood that was reflected in the changes of expression of the eggshell gland genes involved in the mineralization of eggshell.


Subject(s)
Animal Feed/analysis , Animal Structures/drug effects , Calcium-Binding Proteins/metabolism , Chickens/physiology , Cynara scolymus , Diet/veterinary , Animal Nutritional Physiological Phenomena , Animal Structures/metabolism , Animals , Calcium-Binding Proteins/genetics , Dietary Supplements , Female , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Toxins (Basel) ; 13(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918654

ABSTRACT

Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails.


Subject(s)
Animal Structures/anatomy & histology , Spider Venoms/metabolism , Spiders/anatomy & histology , Animal Structures/metabolism , Animals , Secretory Pathway , Spider Bites , Spiders/metabolism
8.
Sci Rep ; 11(1): 8941, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903714

ABSTRACT

Blubber and serum testosterone levels were compared among 55 individual common bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, FL during 2011-2019. A significant positive relationship between the matrices was found in male testosterone concentrations in 29 paired samples (r2 = 0.932). Mature males (n = 17) had 300 times greater mean testosterone concentration in serum than immature males (n = 17). A comparison of blubber samples, including 12 females, 24 immature males, and 19 mature males, revealed significant differences in mean blubber testosterone values among all three demographics. Immature males had greater than 6 times the average blubber testosterone concentration of females and mature males had almost 100 times that of immature males. Estimated testis volume was highly correlated with blubber testosterone concentration and mature males had 60 times greater average testis volume than immature males. We observed seasonal variation in blubber testosterone in mature males, consistent with known reproductive patterns. These data suggest males can be distinguished from females and designated as mature or immature via blubber testosterone concentrations, an observation that validates dart biopsy sampling as a means of obtaining demographic data.


Subject(s)
Animal Structures/metabolism , Bottle-Nosed Dolphin/metabolism , Testosterone/blood , Animals , Bays , Female , Florida , Male , Seasons
9.
Toxins (Basel) ; 13(2)2021 02 02.
Article in English | MEDLINE | ID: mdl-33540609

ABSTRACT

Predator-prey interactions are thought to play a driving role in animal evolution, especially for groups that have developed venom as their predatory strategy. However, how the diet of venomous animals influences the composition of venom arsenals remains uncertain. Two prevailing hypotheses to explain the relationship between diet and venom composition focus on prey preference and the types of compounds in venom, and a positive correlation between dietary breadth and the number of compounds in venom. Here, we examined venom complexity, phylogenetic relationship, collection depth, and biogeography of the Terebridae (auger snails) to determine if repeated innovations in terebrid foregut anatomy and venom composition correspond to diet variation. We performed the first molecular study of the diet of terebrid marine snails by metabarcoding the gut content of 71 terebrid specimens from 17 species. Our results suggest that the presence or absence of a venom gland is strongly correlated with dietary breadth. Specifically, terebrid species without a venom gland displayed greater diversity in their diet. Additionally, we propose a revision of the definition of venom complexity in conoidean snails to more accurately capture the breadth of ecological influences. These findings suggest that prey diet is an important factor in terebrid venom evolution and diversification and further investigations of other understudied organisms, like terebrids, are needed to develop robust hypotheses in this area.


Subject(s)
Animal Structures/metabolism , Carnivory , Diet , Mollusk Venoms/metabolism , Predatory Behavior , Snails/metabolism , Animal Structures/anatomy & histology , Animals , Gene Expression Profiling , Mollusk Venoms/genetics , Snails/anatomy & histology , Snails/genetics , Species Specificity , Transcriptome
10.
Nat Commun ; 12(1): 234, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431897

ABSTRACT

Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.


Subject(s)
Insect Proteins/metabolism , Parasites/physiology , Animal Structures/metabolism , Animals , Drosophila/parasitology , Genome, Insect , Host Specificity , Host-Parasite Interactions , Immunity , Male , Mucins/chemistry , Phylogeny , Protein Domains , Species Specificity , Wasps/genetics , Wasps/immunology , Wasps/physiology
11.
Rapid Commun Mass Spectrom ; 35(3): e9003, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33169448

ABSTRACT

RATIONALE: Proxalutamide is a novel drug for the treatment of prostate cancer. However, to date, there are almost no reports on the pharmacokinetics of proxalutamide in vivo. This study developed a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine the concentrations of proxalutamide in biological samples for pharmacokinetic studies. METHODS: Chromatographic separation was achieved on a Kromasil 100-5C8 column followed by gradient elution using a Shimadzu HPLC system. MS was performed in positive ion electrospray ionization mode using a SCIEX API 4000 triple quadrupole system. A simple and rapid one-step protein precipitation method was used for sample processing, and a low sample volume of 10 µL was used for processing and analysis. RESULTS: The method was validated to show good selectivity, sensitivity, precision, and accuracy. Good linearity (r2 > 0.99) was observed for rat plasma (range: 2-5000 ng/mL) and rat tissue homogenates (range: 2-2000 ng/mL). The extraction recovery was above 98%, and no significant matrix effect was observed. This method was successfully applied to investigate the pharmacokinetics and tissue distribution of proxalutamide in rats. CONCLUSIONS: A rapid and sensitive LC/MS/MS method was developed and validated to determine the quantity of proxalutamide in rat plasma and tissue homogenates and to further study the pharmacokinetic parameters of proxalutamide in a rat model. The results showed that proxalutamide had good oral bioavailability and wide tissue distribution in vivo.


Subject(s)
Chromatography, High Pressure Liquid/methods , Oxazoles/pharmacokinetics , Plasma/chemistry , Prostatic Neoplasms/drug therapy , Tandem Mass Spectrometry/methods , Thiohydantoins/pharmacokinetics , Animal Structures/chemistry , Animal Structures/metabolism , Animals , Biological Availability , Humans , Male , Oxazoles/administration & dosage , Oxazoles/blood , Prostatic Neoplasms/blood , Rats , Rats, Sprague-Dawley , Thiohydantoins/administration & dosage , Thiohydantoins/blood , Tissue Distribution
12.
Nature ; 587(7834): 455-459, 2020 11.
Article in English | MEDLINE | ID: mdl-33116314

ABSTRACT

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Eating/physiology , Energy Intake/physiology , Mothers , Neurons/metabolism , Reproduction/physiology , Animal Structures/cytology , Animal Structures/innervation , Animal Structures/metabolism , Animals , Appetite Regulation/physiology , Female , Hyperphagia/metabolism , Male , Neuropeptides/metabolism
13.
Gen Comp Endocrinol ; 295: 113529, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32522487

ABSTRACT

Pregnancy status in harbour seals can be estimated from concentrations of progesterone in blubber as well as in blood samples, which are significantly higher in pregnant than non-pregnant animals. This study investigated the accuracy of estimating pregnancy rates using samples from live-captured and released harbour seals from three regions around Scotland, coupled with observed pregnancy outcomes. Concentrations of progesterone in blood (plasma) and blubber were obtained during the capture of animals early in the year (February to May). Individual animals were identified from the unique markings on their pelage, with a proportion (n = 51) of females re-sighted during the subsequent breeding season and the reproductive outcomes determined (pregnant or possibly non-pregnant) during observations from long-term photo-identification studies. Generalised linear models with a binomial link function were fitted to training (60% of the data) and test datasets (40% of the data) to estimate pregnancy status from progesterone concentrations in blubber, plasma or both, and a received operating curves (ROC) approach was used to evaluate the performance of each classifier. The accuracy for the plasma concentrations was 85% with a high classification performance (as estimated from an area under the curve (AUC) of 0.82). The Youden method to determine the cut-point (threshold) and bootstrapping the training dataset resulted in a cut-point of 58 ng ml-1 (95th percentiles, 25-102 ng ml-1). For blubber, the accuracy was 77% (AUC = 0.86) with an optimal cut-point of 56 ng g-1 (95th percentiles, 26-223 ng g-1). In the combined analysis (both blubber and plasma), the accuracy was 87.5% (AUC 0.81) with the cut-points of 72 ng ml-1 (95th percentiles, 25-103 ng ml-1) in plasma and 56 ng g-1 (95th percentiles, 26-223 ng g-1) in blubber. These thresholds were then used to estimate the pregnancy proportions among adult females at the three study sites, including those that were not included in the photo-id studies. Proportions were high at all sites, (63%-100%) regardless of which matrices were used and were not statistically significantly different from each other but suggested that analysing concentrations in both sample matrices would minimise the uncertainty.


Subject(s)
Animal Structures/metabolism , Phoca/blood , Progesterone/blood , Animals , Area Under Curve , Female , Pregnancy , Reproduction , Seasons
14.
Gen Comp Endocrinol ; 295: 113522, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32492383

ABSTRACT

The crustacean hyperglycemic hormone (CHH) neuropeptide family has multiple functions in the regulation of hemolymph glucose levels, molting, ion, and water balance and reproduction. In crab species, three neuroendocrine tissues: the eyestalk ganglia (medulla terminalis X-organ and -sinus gland = ES), the pericardial organ (PO), and guts synthesize a tissue-specific isoforms of CHH neuropeptides. Recently the presence of the mandibular organ-inhibiting hormone (MOIH) was reported in the stomatogastric nervous system (STNS) that regulates the rhythmic muscle movements in esophagus, cardiac sac, gastric and pyloric ports of the foregut. In this study, we aimed to determine the presence of a tissue-specific CHH isoform in the Jonah crab, Cancer borealis using PCR with degenerate primers and 5', 3' rapid amplification of cDNA ends (RACE) in the ES. PO, and STNS. The analysis of CHH sequences shows that C. borealis has one type of CHH isoform, unlike other crab species. We also isolated the cDNA sequence of molt-inhibiting hormone (MIH) in the ES and MOIH in the ES and STNS. The presence of CHH, MOIH and MIH in the sinus gland of adult females and males is confirmed by using a dot-blot assay with the putative peaks collected from RP-HPLC and anti-Cancer sera for CHH, MIH, and MOIH. The present of crustacean female sex hormone (CFSH) in the sinus gland of adult females was examined with a dot-blot assay with anti-Callinectes CFSH serum. Levels of CHH, MOIH, and MIH in the sinus gland and their expressions in the eyestalk ganglia are estimated in the adult males, where CHH is the predominant form among these neuropeptides.


Subject(s)
Arthropod Proteins/genetics , Brachyura/genetics , Gene Expression Regulation , Invertebrate Hormones/genetics , Nerve Tissue Proteins/genetics , Amino Acid Sequence , Animal Structures/metabolism , Animals , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Cloning, Molecular , DNA, Complementary/metabolism , Female , Hemolymph/metabolism , Male , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Neurosecretory Systems/metabolism
15.
Gen Comp Endocrinol ; 294: 113488, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32272132

ABSTRACT

As part of the study of their bioluminescence, the deep-sea lanternshark Etmopterus spinax and Etmopterus molleri (Chondrichthyes, Etmopteridae) received growing interest over the past ten years. These mesopelagic sharks produce light thanks to a finely tuned hormonal control involving melatonin, adrenocorticotropic hormone and α-melanocyte-stimulating hormone. Receptors of these hormones, respectively the melatonin receptors and the melanocortin receptors, are all members of the G-protein coupled receptor family i.e. coupled with specific G proteins involved in the preliminary steps of their transduction pathways. The present study highlights the specific localization of the hormonal receptors, as well as of their associated G-proteins within the light organs, the so-called photophores, in E. spinax and E. molleri through immunohistofluorescence technic. Our results allow gaining insight into the molecular actors and mechanisms involved in the control of the light emission in Etmopterid sharks.


Subject(s)
Hormones/metabolism , Luminescence , Receptors, Cell Surface/metabolism , Sharks/metabolism , Adrenocorticotropic Hormone/metabolism , Animal Structures/metabolism , Animals , GTP-Binding Proteins/metabolism , Melatonin/metabolism , Phylogeny , Receptors, Melatonin/metabolism , alpha-MSH/metabolism
16.
Article in English | MEDLINE | ID: mdl-32109670

ABSTRACT

The sea cucumber Apostichopus japonicus (Selenka)is a typical nocturnal echinoderm, which is believed to be almost completely dependent on light intensity for the regulation of endogenous rhythms. Under conditions of high light intensity, this species shows clear evidence of light avoidance behavior, seeking out shaded areas of reef in which to reside. In this study, we performed RNA-Seq analysis to examine the tentacle transcriptome of A. japonicus specimens that had been subjected to dark and light (5 min and 1 h) conditions. We specifically focused on detecting genes involved in opsin-based light perception, including opsins and members of phototransduction-related pathways. On the basis of comparisons with both vertebrate and invertebrate phototransduction pathways, we determined that components of two of the main metazoan phototransduction pathways were altered in response to illumination. Among the key phototransduction-related genes in tentacles, we identified retinol dehydrogenase, members of the dehydrogenase/reductase family, and myosin III, and also detected a pair of visual pigment-like receptors, peropsin and peropsin-like, the homologous genes of which are believed to have the same function but show opposite expression patterns in response to different light environments. In general, the up-regulation of key genes in sea cucumber exposed to illumination indicated that the tentacles can respond to differences in the light environment at the molecular level.


Subject(s)
Animal Structures/metabolism , Gene Expression Regulation/radiation effects , Light Signal Transduction/genetics , Sea Cucumbers/genetics , Transcriptome/radiation effects , Animal Structures/radiation effects , Animals , Gene Expression Profiling , Sea Cucumbers/radiation effects
17.
Sci Rep ; 10(1): 3315, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094373

ABSTRACT

Beet cyst nematodes depend on a set of secretory proteins (effectors) for the induction and maintenance of their syncytial feeding sites in plant roots. In order to understand the relationship between the beet cyst nematode H. schachtii and its host, identification of H. schachtii effectors is crucial and to this end, we sequenced a whole animal pre-infective J2-stage transcriptome in addition to pre- and post-infective J2 gland cell transcriptome using Next Generation Sequencing (NGS) and identified a subset of sequences representing putative effectors. Comparison between the transcriptome of H. schachtii and previously reported related cyst nematodes and root-knot nematodes revealed a subset of esophageal gland related sequences and putative effectors in common across the tested species. Structural and functional annotation of H. schachtii transcriptome led to the identification of nearly 200 putative effectors. Six putative effector expressions were quantified using qPCR and three of them were functionally analyzed using RNAi. Phenotyping of the RNAi nematodes indicated that all tested genes decrease the level of nematodes pathogenicity and/or the average female size, thereby regulating cyst nematode parasitism. These discoveries contribute to further understanding of the cyst nematode parasitism.


Subject(s)
Beta vulgaris/parasitology , Parasites/genetics , Plant Diseases/parasitology , Transcriptome/genetics , Tylenchoidea/physiology , Alternative Splicing/genetics , Animal Structures/metabolism , Animals , Helminth Proteins/genetics , Helminth Proteins/metabolism , Host-Parasite Interactions/genetics , Molecular Sequence Annotation , Reproducibility of Results
18.
Gen Comp Endocrinol ; 291: 113436, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32057910

ABSTRACT

Baleen whales are vulnerable to environmental impacts due to low fecundity, capital breeding strategies, and their reliance on a large amount of prey resources over large spatial scales. There has been growing interest in monitoring health and physiological stress in these species but, to date, few measures have been validated. The purpose of this study was to examine whether blubber cortisol could be used as a measure of physiological stress in humpback whales. Cortisol concentrations were initially compared between live, presumably 'healthy' whales (n = 187) and deceased whales (n = 35), which had died after stranding or entanglement, or washed ashore as a carcass. Deceased whales were found to have significantly higher cortisol levels (mean ± SD; 5.47 ± 4.52 ng/g) than live whales (0.51 ± 0.14 ng/g; p < 0.001), particularly for those animals that had experienced prolonged trauma (e.g. stranding) prior to death. Blubber cortisol levels in live whales were then examined for evidence of life history-related, seasonal, or sampling-related effects. Life history group and sampling-related factors, such as encounter time and the number of biopsy sampling attempts per animal, were found to be poor predictors of blubber cortisol levels in live whales. In contrast, blubber cortisol levels varied seasonally, with whales migrating north towards the breeding grounds in winter having significantly higher levels (0.54 ± 0.21 ng/g, p = 0.016) than those migrating south towards the feeding grounds in spring (0.48 ± 1.23 ng/g). These differences could be due to additional socio-physiological stress experienced by whales during peaks in breeding activity. Overall, blubber cortisol appears to be a suitable measure of chronic physiological stress in humpback whales.


Subject(s)
Animal Structures/metabolism , Humpback Whale/anatomy & histology , Hydrocortisone/metabolism , Stress, Physiological , Adipose Tissue/metabolism , Animals , Female , Geography , Humpback Whale/physiology , Male , Progesterone/metabolism , Queensland , Seasons
19.
Mol Biol Cell ; 31(8): 825-832, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32049594

ABSTRACT

Cellular responsiveness to environment, including changes in extracellular matrix (ECM), is critical for normal processes such as development and wound healing, but can go awry, as in oncogenesis and fibrosis. One type of molecular pathway contributing to this responsiveness is the BMP signaling pathway. Owing to their broad and potent functions, BMPs and their pathways are regulated at multiple levels. In Caenorhabditis elegans, the BMP ligand DBL-1 is a regulator of body size. We previously showed that DBL-1/BMP signaling determines body size through transcriptional regulation of cuticle collagen genes. We now identify feedback regulation of DBL-1/BMP through analysis of four DBL-1-regulated collagen genes. Inactivation of any of these genes reduces DBL-1/BMP signaling, measured by a pathway activity reporter. Furthermore, depletion of these collagens reduces GFP::DBL-1 fluorescence and acts unexpectedly at the level of dbl-1 transcription. We conclude that cuticle, a specialized ECM, impinges on DBL-1/BMP expression and signaling. Interestingly, the feedback regulation of DBL-1/BMP signaling by collagens is likely to be contact independent due to physical separation of the cuticle from DBL-1-expressing cells in the ventral nerve cord. Our results provide an entry point into a novel regulatory mechanism for BMP signaling, with broader implications for mechanical regulation of gene expression.


Subject(s)
Animal Structures/metabolism , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Collagen/physiology , Neuropeptides/physiology , Signal Transduction/physiology , Transforming Growth Factor beta/physiology , Animals , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/genetics , Collagen/biosynthesis , Collagen/genetics , Feedback, Physiological , Genes, Reporter , RNA Interference , Smad Proteins/metabolism , Transcription, Genetic
20.
Sci Adv ; 6(2): eaax4942, 2020 01.
Article in English | MEDLINE | ID: mdl-31934625

ABSTRACT

Through their diet, animals can obtain substances essential for imparting special characteristics, such as toxins in monarch butterflies and luminescent substances in jellyfishes. These substances are typically small molecules because they are less likely to be digested and may be hard for the consumer to biosynthesize. Here, we report that Parapriacanthus ransonneti, a bioluminescent fish, obtains not only its luciferin but also its luciferase enzyme from bioluminescent ostracod prey. The enzyme purified from the fish's light organs was identical to the luciferase of Cypridina noctiluca, a bioluminescent ostracod that they feed upon. Experiments where fish were fed with a related ostracod, Vargula hilgendorfii, demonstrated the specific uptake of the luciferase to the fish's light organs. This "kleptoprotein" system allows an organism to use novel functional proteins that are not encoded in its genome and provides an evolutionary alternative to DNA-based molecular evolution.


Subject(s)
Crustacea/physiology , Fish Proteins/metabolism , Fishes/physiology , Luciferases/metabolism , Luminescent Measurements , Predatory Behavior/physiology , Amino Acid Sequence , Animal Structures/metabolism , Animals , Fish Proteins/chemistry , Luciferases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...