Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.654
Filter
1.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734682

ABSTRACT

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Subject(s)
Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
2.
PLoS One ; 19(5): e0296109, 2024.
Article in English | MEDLINE | ID: mdl-38743696

ABSTRACT

Colistin resistance is a global concern warning for a one health approach to combat the challenge. Colistin resistant E. coli and their resistance determinants are widely distributed in the environment, and rats could be a potential source of these isolates and resistant determinants to a diverse environmental setting. This study was aimed to determine the presence of colistin resistant E. coli (CREC) in wild rats, their antimicrobial resistance (AMR) phenotypes, and genotypic analysis of mcr-1 CREC through whole genome sequencing (WGS). A total of 39 rats were examined and CREC was isolated from their fecal pellets onto MacConkey agar containing colistin sulfate (1 µg/ mL). AMR of the CREC was determined by disc diffusion and broth microdilution was employed to determine MIC to colistin sulfate. CREC were screened for mcr genes (mcr-1 to mcr-8) and phylogenetic grouping by PCR. Finally, WGS of one mcr-1 CREC was performed to explore its genetic characteristics especially resistomes and virulence determinants. 43.59% of the rats carried CREC with one (2.56%) of them carrying CREC with mcr-1 gene among the mcr genes examined. Examination of seventeen (17) isolates from the CREC positive rats (n = 17) revealed that majority of them belonging to the pathogenic phylogroup D (52.94%) and B2 (11.76%). 58.82% of the CREC were MDR on disc diffusion test. Shockingly, the mcr-1 CREC showed phenotypic resistance to 16 antimicrobials of 8 different classes and carried the ARGs in its genome. The mcr-1 gene was located on a 60 kb IncI2 plasmid. On the other hand, ARGs related to aminoglycosides, phenicols, sulfonamides, tetracyclines and trimethoprims were located on a 288 kb mega-plasmid separately. The mcr-1 CREC carried 58 virulence genes including genes related to adhesion, colonization, biofilm formation, hemolysis and immune-evasion. The isolate belonged to ST224 and closely related to E. coli from different sources including UPEC clinical isolates from human based on cgMLST analysis. The current research indicates that rats might be a possible source of CREC, and the presence of mcr-1 and other ARGs on plasmid increases the risk of ARGs spreading and endangering human health and other environmental components through this infamous pest.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Bacterial , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Animals , Colistin/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Rats , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Bangladesh , Whole Genome Sequencing/methods , Phylogeny , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Animals, Wild/microbiology , Feces/microbiology
3.
Ecohealth ; 21(1): 71-82, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727761

ABSTRACT

Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC) and non-tuberculous Mycobacteria (NTM), may infect wild and domestic mammals, including humans. Although cattle are the main hosts and spreaders of M. bovis, many wildlife hosts play an important role worldwide. In Argentina, wild boar and domestic pigs are considered important links in mammalian tuberculosis (mTB) transmission. The aim of this work was to investigate the presence of M. bovis in wild pigs from different regions of Argentina, to characterize isolates of M. bovis obtained, and to compare those with other previously found in vertebrate hosts. A total of 311 samples from wild pigs were obtained, and bacteriological culture, molecular identification and genotyping were performed, obtaining 63 isolates (34 MTC and 29 NTM). Twelve M. bovis spoligotypes were detected. Our findings suggest that wild pigs have a prominent role as reservoirs of mTB in Argentina, based on an estimated prevalence of 11.2 ± 1.8% (95% CI 8.0-14.8) for MTC and the frequency distribution of spoligotypes shared by cattle (75%), domestic pigs (58%) and wildlife (50%). Argentina has a typical scenario where cattle and pigs are farm-raised extensively, sharing the environment with wildlife, creating conditions for effective transmission of mTB in the wildlife-livestock-human interface.


Subject(s)
Animals, Wild , Mycobacterium bovis , Swine Diseases , Tuberculosis , Animals , Argentina/epidemiology , Animals, Wild/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/microbiology , Mycobacterium bovis/isolation & purification , Mycobacterium bovis/genetics , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Sus scrofa/microbiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Prevalence , Genotype
4.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Article in English | MEDLINE | ID: mdl-38739673

ABSTRACT

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Subject(s)
Genetic Variation , Rodentia , Animals , China/epidemiology , Rodentia/microbiology , Rodentia/parasitology , Phylogeny , Animals, Wild/parasitology , Animals, Wild/microbiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Vector Borne Diseases/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/epidemiology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Rats
5.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703681

ABSTRACT

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Subject(s)
Mycobacterium bovis , Phylogeny , Whole Genome Sequencing , Mycobacterium bovis/genetics , Animals , Genome, Bacterial , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Cattle , Environmental Microbiology , Animals, Wild/microbiology
6.
Sci Total Environ ; 933: 173027, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38729368

ABSTRACT

Staphylococcus aureus is a versatile pathobiont, exhibiting a broad host range, including humans, other mammals, and avian species. Host specificity determinants, virulence, and antimicrobial resistance genes are often shared by strains circulating at the animal-human interface. While transmission dynamics studies have shown strain exchange between humans and livestock, knowledge of the source, genetic diversification, and transmission drivers of S. aureus in wildlife lag behind. In this work, we explore a wide array of S. aureus genomes from different sources in the Iberian Peninsula to understand population structure, gene content and niche adaptation at the human-livestock-wildlife nexus. Through Bayesian inference, we address the hypothesis that S. aureus strains in wildlife originate from humanized landscapes, either from contact with humans or through interactions with livestock. Phylogenetic reconstruction applied to whole genome sequence data was completed with a dataset of 450 isolates featuring multiple clones from the 1990-2022 period and a subset of CC398 strains representing the 2008-2022 period. Phylodynamic signatures of S. aureus from the Iberian Peninsula suggest widespread circulation of most clones among humans before jumping to other hosts. The number of transitions of CC398 strains within each host category (human, livestock, wildlife) was high (88.26 %), while the posterior probability of transitions from livestock to wildlife was remarkably high (0.99). Microbial genome-wide association analysis did not evidence genome rearrangements nor biomarkers suggesting S. aureus niche adaptation to wildlife, thus supporting recent spill overs. Altogether, our findings indicate that S. aureus isolates collected in the past years from wildlife most likely represent multiple introduction events from livestock. The clonal origin of CC398 and its potential to disseminate and evolve through different animal host species are highlighted, calling for management practices at the livestock-wildlife axis to improve biosecurity and thus restrict S. aureus transmission and niche expansion along gradients of human influence.


Subject(s)
Animals, Wild , Livestock , Staphylococcal Infections , Staphylococcus aureus , Animals , Livestock/microbiology , Staphylococcus aureus/genetics , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Animals, Wild/microbiology , Spain , Humans , Phylogeny , Portugal/epidemiology
7.
Braz J Microbiol ; 55(2): 1941-1948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691328

ABSTRACT

Leptospira spp. are bacteria responsible for leptospirosis, a zoonotic disease with considerable impacts on the economy, animal health, and public health. This disease has a global distribution and is particularly prevalent in Brazil. Both rural and urban environments are habitats for Leptospira spp., which are primarily transmitted through contact with the urine of infected animals. Consequently, domestic and wild species can harbor these prokaryotes and serve as infection sources for other hosts. In the context of wild animals, there is a dearth of molecular studies elucidating the roles of various animal and bacterial species in the epidemiology of leptospirosis. Therefore, this study aimed to evaluate the presence of Leptospira spp. DNA in different species of free-living and captive wild animals and to assess the phylogenetic relationships of the identified microorganisms in Rio Grande do Sul, Brazil. The samples were evaluated for the presence of the gene lipL32 by polymerase chain reaction (PCR) and sequencing of the amplified fragment after which phylogenetic analyzes were carried out. DNA from Leptospira spp. was extracted from kidney tissue from wild animals (Mammalia class). Pathogenic Leptospira spp. DNA was detected in 9.6% (11/114) of the samples, originating from nine species of wild animals, including the white-eared opossum (Didelphis albiventris), skunk (Conepatus chinga), geoffroy's cat (Leopardus geoffroyi), margay (Leopardus wiedii), pampas fox (Lycalopex gymnocercus), capybara (Hydrochoerus hydrochaeris), common marmoset (Callithrix jacchus), neotropical river otter (Lontra longicaudis), and european hare (Lepus europaeus). Phylogenetic analysis revealed the presence of Leptospira borgpetersenii and Leptospira interrogans in these animals. This research is the first study contributing to the epidemiology of leptospirosis by identifying L. borgpetersenii and L. interrogans in free-living and captive wild animals in Rio Grande do Sul, Brazil, potentially acting as bacterial reservoirs. Additionally, our findings can inform sanitary measures for controlling and preventing the disease, thereby safeguarding public health.


Subject(s)
Animals, Wild , Leptospira interrogans , Leptospira , Leptospirosis , Phylogeny , Animals , Brazil/epidemiology , Leptospirosis/microbiology , Leptospirosis/veterinary , Leptospirosis/epidemiology , Animals, Wild/microbiology , Leptospira/genetics , Leptospira/isolation & purification , Leptospira/classification , Leptospira interrogans/genetics , Leptospira interrogans/classification , Leptospira interrogans/isolation & purification , Mammals/microbiology , DNA, Bacterial/genetics
8.
PeerJ ; 12: e16979, 2024.
Article in English | MEDLINE | ID: mdl-38560462

ABSTRACT

The fecal microbiota plays an important role in maintaining animal health and is closely related to host life activities. In recent years, there have been an increasing number of studies on the fecal microbiota from birds. An exploration of the effects of species and living environments on the composition of gut microbiota will provide better protection for wildlife. In this study, non-injury sampling and 16S rDNA high-throughput sequencing were used to investigate the bacterial composition and diversity of the fecal microbiota in silver pheasants (Lophura nycthemera) and golden pheasants (Chrysolophus pictus) from Tianjin Zoo and Beijing Wildlife Park. The results showed that the abundance of Firmicutes was the highest in all fecal samples. At the genus level, Bacteroides was the common dominant bacteria, while there were some differences in other dominant bacteria genera. There were significant differences in fecal microbial composition between the golden pheasants from Tianjin Zoo and Beijing Wildlife Park. The metabolic analysis and functional prediction suggested that the gut microbiota composition and host metabolism were influenced by dietary interventions and living conditions. The results of this study provide the basis for further research of intestinal microbial of L. nycthemera and C. pictus, and valuable insights for conservation of related species.


Subject(s)
Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , Animals, Wild/microbiology , Diet/veterinary , Quail , Feces/microbiology , Bacteria/genetics
9.
Sci Rep ; 14(1): 8039, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580725

ABSTRACT

This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Costa Rica , Public Health , Drug Resistance, Bacterial , Mammals , Animals, Wild/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria , Rehabilitation Centers
10.
Acta Trop ; 254: 107210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599442

ABSTRACT

Several species of hard ticks, including those of the genera Ixodes, Haemaphysalis, Amblyomma, and Rhipicephalus, are of medical and veterinary importance and have been reported in association with Neotropical wild birds. Colombia, known for its great bird diversity, has 57 confirmed tick species. However, there are few studies on the association between wild birds and ticks in Colombia. The Orinoquia region, a migratory center in Colombia, provides a unique opportunity to study wild bird-tick associations and their implications for tick-borne disease dynamics. Our study, conducted between October and December 2021, aimed to identify hard ticks infesting resident and migratory wild birds in the department of Arauca and to assess the presence of bacteria from the genera Anaplasma, Borrelia, Ehrlichia, Rickettsia, and piroplasms. A total of 383 birds were examined, of which 21 were infested. We collected 147 ticks, including Amblyomma dissimile (larvae), Amblyomma longirostre (nymphs), Amblyomma mixtum (adults), and Amblyomma nodosum (larvae and nymphs). We did not detect bacterial DNA in the tested ticks; however, piroplasm DNA was detected in ticks from three of the infested birds. Of the 21 bird-tick associations, six are new to the Americas, and interesting documentation of piroplasm DNA in A. longirostre, A. nodosum, and A. dissimile ticks from wild birds in the region. This study provides valuable insights into the ticks associated with wild birds and their role in the dispersal of ticks and pathogens in Colombia, enhancing our understanding of tick life cycles and tick-borne disease dynamics.


Subject(s)
Animals, Wild , Bird Diseases , Birds , Ixodidae , Tick Infestations , Animals , Colombia , Tick Infestations/veterinary , Tick Infestations/epidemiology , Birds/parasitology , Ixodidae/microbiology , Ixodidae/growth & development , Ixodidae/classification , Animals, Wild/parasitology , Animals, Wild/microbiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Borrelia/isolation & purification , Ehrlichia/isolation & purification , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Animal Migration , Anaplasma/isolation & purification , Anaplasma/genetics , Nymph/microbiology , Nymph/growth & development , Female , Male , Larva/microbiology , Amblyomma/microbiology
11.
Emerg Infect Dis ; 30(5): 1000-1003, 2024 May.
Article in English | MEDLINE | ID: mdl-38666639

ABSTRACT

We describe the detection of Paranannizziopsis sp. fungus in a wild population of vipers in Europe. Fungal infections were severe, and 1 animal likely died from infection. Surveillance efforts are needed to better understand the threat of this pathogen to snake conservation.


Subject(s)
Mycoses , Viperidae , Animals , Europe/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Animals, Wild/microbiology
12.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640951

ABSTRACT

Antimicrobial resistance (AMR) is a serious health issue shared across all One Health domains. Wildlife species represent a key intersection of the animal and environmental domains. They are a relevant but understudied reservoir and route of spread for AMR throughout the environment. Most wildlife AMR research thus far has focused on avian species, terrestrial mammals, and a selection of aquatic and marine species. Pathogens often identified in terrestrial wildlife include enteric zoonotic organisms such as Eschericia coli and Salmonella spp, in addition to nonenterics such as Staphylococci. Resistances have been commonly identified to antimicrobials important in veterinary and human medicine, including ß-lactams, tetracyclines, aminoglycosides, and macrolides. Our emerging understanding of the dynamics of AMR distribution across life on Earth provides further opportunities for us to assess the risk it poses to veterinary and human health. Future work will require prioritizing which wildlife most exacerbates and indicates AMR in domestic animals. However, decreasing prices and increasing ease for metagenomic sequencing allows for synergies with expanding wildlife viral disease surveillance. Improved understanding of how wildlife impacts veterinary and human healthcare may increase opportunities for related research funding and global equity in such research. The companion Currents in One Health article by Vezeau and Kahn, JAVMA, June 2024, addresses in further detail the routes of spread of AMR across different animal populations and actions that can be taken to mitigate AMR with special consideration for wildlife sources.


Subject(s)
Animals, Wild , Disease Reservoirs , Drug Resistance, Bacterial , Animals , Animals, Wild/microbiology , Disease Reservoirs/veterinary , Disease Reservoirs/microbiology , Anti-Bacterial Agents/pharmacology , Humans , Zoonoses/microbiology
13.
Environ Pollut ; 350: 123894, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599270

ABSTRACT

Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Ecosystem , Fresh Water , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Fishes/microbiology , Environmental Monitoring , Water Pollutants, Chemical , Gene Transfer, Horizontal , Aquatic Organisms/genetics , Animals, Wild/microbiology , Drug Resistance, Bacterial/genetics
14.
J Infect Public Health ; 17(6): 1023-1036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657438

ABSTRACT

Wild birds could be a reservoir of medically relevant microorganisms, particularly multidrug-resistant Enterococcus spp. Resistant bacteria's epidemiology and transmission between animals and humans has grown, and their zoonotic potential cannot be ignored. This is the first study to evaluate the status of vancomycin resistant enterococci (VRE) in various wild bird species using meta-analysis and a systematic review. In this study, the pooled prevalence was obtained by analyzing data from published articles on the occurrence of VRE in wild bird species. It's unclear how the antibiotic resistance gene transfer cycle affects wild birds. Google Scholar and PubMed were used to conduct the research. The data and study methodology was assessed and extracted by two reviewers independently, with a third reviewing the results. Heterogeneity between study and publication bias were analyzed using the random effect model. Thirty-eight studies were included in the meta-analysis. 382 out of the 4144 isolates tested, were VRE. The pooled prevalence of VRE among wild birds was estimated at 11.0% (95% CI; 6.9 -17.2%; I2 = 93.204%; P < 0.001). There was high variability between study (t2 = 2.156; heterogeneity I2 = 93.204% with chi-square (Q) = 544.413, degrees of freedom (df) = 37, and P < 0.001). Egger's test verified the funnel plot's bias, while result from the leave-one-out forest plot had no effect on the pooled prevalence.


Subject(s)
Animals, Wild , Birds , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Animals, Wild/microbiology , Birds/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Prevalence , Vancomycin-Resistant Enterococci/isolation & purification
15.
Sci Total Environ ; 926: 171899, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527537

ABSTRACT

Synanthropic bird species in human, poultry or livestock environments can increase the spread of pathogens and antibiotic-resistant bacteria between wild and domestic animals. We present the first telemetry-based spatial networks for a small songbird. We quantified landscape connectivity exerted by spotless starling movements, and aimed to determine if connectivity patterns were related to carriage of potential pathogens. We captured 28 starlings on a partridge farm in 2020 and tested them for Avian influenza virus, West Nile virus WNV, Avian orthoavulavirus 1, Coronavirus, Salmonella spp. and Escherichia coli. We did not detect any viruses or Salmonella, but one individual had antibodies against WNV or cross-reacting Flaviviruses. We found E. coli in 61 % (17 of 28) of starlings, 76 % (13 of 17) of which were resistant to gentamicin, 12 % (2 of 17) to cefotaxime/enrofloxacin and 6 % (1 of 17) were phenotypic extended spectrum beta-lactamase (ESBL) carriers. We GPS-tracked 17 starlings and constructed spatial networks showing how their movements (i.e. links) connect different farms with nearby urban and natural habitats (i.e. nodes with different attributes). Using E. coli carriage as a proxy for acquisition/dispersal of bacteria, we found differences across spatial networks constructed for E. coli positive (n = 7) and E. coli negative (n = 9) starlings. We used Exponential Random Graph Models to reveal significant differences between networks. In particular, an urban roost was more connected to other sites by movements of E. coli positive than by movements of E. coli negative starlings. Furthermore, an open pine forest used mainly for roosting was more connected to other sites by movements of E. coli negative than by movements of E. coli positive starlings. Using E. coli as a proxy for a potential pathogen carried by starlings, we reveal the pathways of spread that starlings could provide between farms, urban and natural habitats.


Subject(s)
Escherichia coli , Starlings , Animals , Humans , Animals, Wild/microbiology , Starlings/microbiology , Anti-Bacterial Agents , Cefotaxime , Bacteria , beta-Lactamases
16.
J Am Vet Med Assoc ; 262(4): 451-458, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428137

ABSTRACT

Once considered to be a simple cause-and-effect relationship with localized impact, the concept of how antimicrobial use drives antimicrobial resistance is now recognized as a complex, transdisciplinary problem on a global scale. While the issue of antimicrobial resistance is often studied and addressed at the antimicrobial-human or antimicrobial-animal treatment interface, the role of the environment in the One Health dynamics of antimicrobial resistance is not as well understood. Antimicrobial-resistant bacteria, including those resistant to carbapenem drugs, are emerging in veterinary clinical environments, on farms, and in natural habitats. These multidrug-resistant bacteria can colonize our livestock and companion animals and are later disseminated into the environment, where they contaminate surface waters and colonize wildlife. From here, the One Health transmission cycle of antimicrobial-resistant bacteria is completed as environmental reservoirs can serve as sources of antimicrobial resistance transmission into human or animal healthcare settings. In this review, we utilize a One Health perspective to evaluate how environments become contaminated and, in turn, become reservoirs that can colonize and infect our veterinary species, and how the veterinary field is combating environmental contamination with antimicrobial stewardship regulations and program implementation. The companion Currents in One Health by Parker et al, AJVR, April 2024, addresses the intensive research that justifies this One Health cycle of antimicrobial resistance transmission and emerging techniques that are dissecting the complex interactions at the One Health interface.


Subject(s)
Anti-Bacterial Agents , One Health , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Animals, Wild/microbiology , Drug Resistance, Multiple, Bacterial
17.
Vet Res Commun ; 48(3): 1631-1640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38443588

ABSTRACT

Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian ß-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.


Subject(s)
Bartonella Infections , Bartonella , Bird Diseases , Birds , Wetlands , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Brazil/epidemiology , Birds/microbiology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Phylogeny , Animals, Wild/microbiology , RNA, Ribosomal, 16S/genetics , Polymerase Chain Reaction/veterinary
19.
PLoS One ; 19(2): e0287893, 2024.
Article in English | MEDLINE | ID: mdl-38324542

ABSTRACT

Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.


Subject(s)
Helminths , Parasites , Plasmodium , Humans , Animals , Peru/epidemiology , Prevalence , Zoonoses/epidemiology , Animals, Wild/microbiology , Haplorhini , Saguinus
20.
PLoS One ; 19(2): e0281006, 2024.
Article in English | MEDLINE | ID: mdl-38358989

ABSTRACT

Wildlife can carry pathogenic organisms, including viruses, bacteria, parasites, and fungi, which can spread to humans and cause mild to serious illnesses and even death. Spreading through animal feces, these pathogens significantly contributes to the global burden of human diseases. Therefore, the present study investigated the prevalence of zoonotic bacterial pathogens, such as Salmonella spp., Escherichia coli, and Shiga toxin-producing E. coli (STEC), in animal feces. Between September 2015 and August 2017, 699 wildlife fecal samples were collected from various agricultural production regions and mountainous areas in South Korea. Fecal samples were collected from wild mammals (85.26%, 596/699) and birds (14.73%, 103/699). Salmonella spp. and E. coli were present in 3% (21/699) and 45.63% (319/699) of the samples, respectively. Moreover, virulence genes stx1 and both stx1 and stx2 were detected in 13.30% (93/699) and 0.72% (5/699) of the samples, respectively. The 21 Salmonella spp. were detected in badgers (n = 5), leopard cats (n = 7), wild boars (n = 2), and magpies (n = 7); STEC was detected in roe deer, water deer, mice, and wild boars. Through phylogenetic and gene-network analyses, the Salmonella spp. isolates (n = 21 laboratory isolates, at least one isolate from each Salmonella-positive animal fecal sample, and n = 6 widely prevalent reference Salmonella serovars) were grouped into two major lineages: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Similarly, 93 E. coli isolates belonged to stx1, including three major lineages (groups 1-3), and stx1 and stx2 detected groups. To the best of our knowledge, this is the first report of a wild leopard cat serving as a reservoir for Salmonella spp. in South Korea. The research findings can help manage the potential risk of wildlife contamination and improve precautionary measures to protect public health.


Subject(s)
Deer , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Swine , Animals , Humans , Mice , Animals, Wild/microbiology , Prevalence , Phylogeny , Shiga-Toxigenic Escherichia coli/genetics , Deer/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Sus scrofa , Salmonella/genetics , Feces/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...