Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.679
Filter
1.
Bioorg Chem ; 147: 107421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714118

ABSTRACT

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Homeostasis , Hydroxamic Acids , Iron , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Iron/metabolism , Iron/chemistry , Cell Proliferation/drug effects , Homeostasis/drug effects , Structure-Activity Relationship , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Molecular Structure , Apoptosis/drug effects , Anions/chemistry , Anions/pharmacology , Dose-Response Relationship, Drug , Animals , Cell Line, Tumor , Mice , Quinine/analogs & derivatives
2.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695060

ABSTRACT

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Subject(s)
Alkaline Phosphatase , Anions , Coordination Complexes , Iridium , Osteosarcoma , Iridium/chemistry , Humans , Osteosarcoma/pathology , Osteosarcoma/metabolism , Alkaline Phosphatase/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Anions/chemistry , Cell Line, Tumor
3.
Chemosphere ; 358: 142215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701865

ABSTRACT

The existence of microplastics (MPs) in water is a significant global concern since they have the potential to pose a threat to human health. Therefore, there is a need to develop a sustainable treatment technology for MPs removal, as the conventional methods are inadequate to address this problem. Coagulation is a typical process in treatment plants that can capture MPs before releasing them into the environment. In this work, the removal behaviors of polyamide (PA), polystyrene (PS), and polyethylene (PE) MPs were systematically investigated through coagulation processes using aluminum sulfate (Al2(SO4)3) and Moringa oleifera (MO) seeds extract. Subsequently, the coagulation performance of Al2(SO4)3 was improved by the separate addition of anionic polyacrylamide (APAM) and naturally derived MO. Results showed that Al2(SO4)3 in combination with APAM had better performance than Al2(SO4)3 or MO alone. In the Al2(SO4)3+APAM system, the removal efficiencies were 93.47%, 81.25%, and 29.48% for PA, PS, and PE MPs, respectively. Furthermore, the effectiveness of the Al2(SO4)3 and MO blended system was approximately similar to the Al2(SO4)3+APAM system. However, the required amount of Al2(SO4)3 was decreased to 50% in the Al2(SO4)3+MO system compared to the optimal dosage in the Al2(SO4)3 system alone. The combination of 40 mg/L of Al2(SO4)3 and 60 mg/L of MO resulted in removal efficiencies of 92.99%, 80.48%, and 28.94% for PA, PS, and PE MPs, respectively. The high efficacy of these enhanced methods was due to the synergic effects of charge neutralization and agglomeration adsorption, which were validated through zeta potential assessments and visual analysis using scanning electron microscopy (SEM) images. In the case of experimental conditions, initial pH had little impact on removal efficiency, while NaCl salinity and stirring speed directly affected MPs removal. Consequently, this research took a step toward finding a green strategy to remove MPs from water systems.


Subject(s)
Acrylic Resins , Microplastics , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Acrylic Resins/chemistry , Water Purification/methods , Moringa oleifera/chemistry , Anions/chemistry , Adsorption , Polystyrenes/chemistry
4.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791275

ABSTRACT

A comprehensive thermodynamic and structural study of the complexation affinities of tetra (L1), penta (L2), and hexaphenylalanine (L3) linear peptides towards several inorganic anions in acetonitrile (MeCN) and N,N-dimethylformamide (DMF) was carried out. The influence of the chain length on the complexation thermodynamics and structural changes upon anion binding are particularly addressed here. The complexation processes were characterized by means of spectrofluorimetric, 1H NMR, microcalorimetric, and circular dichroism spectroscopy titrations. The results indicate that all three peptides formed complexes of 1:1 stoichiometry with chloride, bromide, hydrogen sulfate, dihydrogen phosphate (DHP), and nitrate anions in acetonitrile and DMF. In the case of hydrogen sulfate and DHP, anion complexes of higher stoichiometries were observed as well, namely those with 1:2 and 2:1 (peptide:anion) complexes. Anion-induced peptide backbone structural changes were studied by molecular dynamic simulations. The anions interacted with backbone amide protons and one of the N-terminal amine protons through hydrogen bonding. Due to the anion binding, the main chain of the studied peptides changed its conformation from elongated to quasi-cyclic in all 1:1 complexes. The accomplishment of such a conformation is especially important for cyclopeptide synthesis in the head-to-tail macrocyclization step, since it is most suitable for ring closure. In addition, the studied peptides can act as versatile ionophores, facilitating transmembrane anion transport.


Subject(s)
Anions , Thermodynamics , Anions/chemistry , Peptides/chemistry , Peptides/metabolism , Hydrogen Bonding , Molecular Dynamics Simulation , Acetonitriles/chemistry , Dimethylformamide/chemistry , Circular Dichroism
5.
Int J Biol Macromol ; 269(Pt 2): 132153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729494

ABSTRACT

Hollow vesicles are promising in water treatment due to their unique structure of the membrane and inner cavity. However, the adsorption capacity needs to be improved for targeted pollutants. Herein, millimeter-scale hollow vesicles were prepared with a one-step process of sequential stirring and grafting using chitosan, diallyldimethylammonium chloride, and sodium alginate as raw materials with the purpose of efficient removal of anionic dyes from wastewater. The composite vesicles were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The hollow vesicles showed the structure of the cationic membrane and the inner cavity, facilitating the dye adsorption. The adsorption capacity for the anionic dye Reactive Black 5 reached 698.1 mg/g, more than twice that of the binary composite vesicles without graft. The adsorption kinetics and isotherm data coincided with the pseudo-second-order and Langmuir models, respectively, and the adsorption mechanism was monolayer chemisorption. Moreover, the vesicles worked well in wide ranges of environment pH, temperature, and co-existing pollutants. They also possessed excellent cyclic regeneration performance, in which 93 % of the initial adsorption capacity was maintained after four cycles. These results indicate that the millimeter-scale hollow vesicles exhibit broad application prospects for wastewater purification.


Subject(s)
Alginates , Chitosan , Coloring Agents , Quaternary Ammonium Compounds , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Alginates/chemistry , Adsorption , Quaternary Ammonium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Water Purification/methods , Kinetics , Anions/chemistry , Hydrogen-Ion Concentration , Wastewater/chemistry , Naphthalenesulfonates/chemistry , Allyl Compounds
6.
Int J Biol Macromol ; 269(Pt 2): 131955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692542

ABSTRACT

Dyes pollution is well known for their hazardous impacts on human health and the environment. The removal of dyes from wastewater has become an important issue. In this study, magnetic micrometer-sized particles AL-CTS@MNPs were synthesized from alkaline lignin (AL) and chitosan (CTS) by "one-pot method". The adsorbent presented higher selectivity adsorption effect on anionic dyes than amphoteric and cationic dyes, and even no adsorption effect on cationic methylene blue (MB), which showed that the anionic dyes could be better separated from the other two types of dyes. The adsorption isotherms of the dyes were highly consistent with the Langmuir model, and the maximum adsorption capacity was 329.50 mg/g for methyl orange (MO) and 20.00 mg/g for rhodamine B (RhB). AL-CTS@MNPs showed good adsorption of anionic dyes (MO) in the pH range of 3-9. Meanwhile, the adsorbent AL-CTS@MNPs were also characterized, showing rough surface with specific surface areas of 37.38 m2/g, pore diameter of 95.8 nm and porosity of 17.62 %. The particle sizes were ranged from 800 µm to 1300 µm. The electrostatic attraction and π-π* electron donor-acceptor interactions were the main forces between the adsorbent and anionic dyes. While the electrostatic repulsive force between the adsorbent and the cationic dyes resulted in the non-absorption of MB by AL-CTS@MNPs. Subsequently, the adsorbent maintained a removal rate of >95 % after five adsorption-desorption cycles, demonstrating its excellent stability and recoverability. Ultimately, the prepared AL-CTS@MNPs illuminated good prospect on complex components dyes wastewater treatment.


Subject(s)
Chitosan , Coloring Agents , Lignin , Water Pollutants, Chemical , Chitosan/chemistry , Adsorption , Lignin/chemistry , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Anions/chemistry , Porosity , Water Purification/methods , Hydrogen-Ion Concentration , Methylene Blue/chemistry , Methylene Blue/isolation & purification , Kinetics , Wastewater/chemistry , Magnetite Nanoparticles/chemistry , Azo Compounds
7.
Int J Biol Macromol ; 269(Pt 1): 131994, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697431

ABSTRACT

Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.


Subject(s)
Cellulose , Chitosan , Coloring Agents , Water Pollutants, Chemical , Zinc Compounds , Chitosan/chemistry , Adsorption , Cellulose/chemistry , Zinc Compounds/chemistry , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Catalysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Sulfides/chemistry , Water Purification/methods , Photolysis , Anions/chemistry
8.
Anal Chem ; 96(21): 8800-8806, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742421

ABSTRACT

Negative-ion electron capture dissociation (niECD) is an anion MS/MS technique that provides fragmentation analogous to conventional ECD, including high peptide sequence coverage and retention of labile post-translational modifications (PTMs). niECD has been proposed to be the most efficient for salt-bridged zwitterionic precursor ion structures. Several important PTMs, e.g., sulfation and phosphorylation, are acidic and can, therefore, be challenging to characterize in the positive-ion mode. Furthermore, PTM-friendly techniques, such as ECD, require multiple precursor ion-positive charges. By contrast, singly charged ions, refractory to ECD, are most compatible with niECD. Because electrospray ionization (ESI) typically yields multiply charged ions, we sought to explore matrix-assisted laser desorption/ionization (MALDI) in combination with niECD. However, the requirement for zwitterionic gaseous structures may preclude efficient niECD of MALDI-generated anions. Unexpectedly, we found that niECD of anions from MALDI is not only possible but proceeds with similar or higher efficiency compared with ESI-generated anions. Matrix selection did not appear to have a major effect. With MALDI, niECD is demonstrated up to m/z ∼4300. For such larger analytes, multiple electron captures are observed, resulting in triply charged fragments from singly charged precursor ions. Such charge-increased fragments show improved detectability. Furthermore, significantly improved (∼20-fold signal-to-noise increase) niECD spectral quality is achieved with equivalent sample amounts from MALDI vs ESI. Overall, the reported combination with MALDI significantly boosts the analytical utility of niECD.


Subject(s)
Anions , Electrons , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Anions/chemistry , Peptides/chemistry , Peptides/analysis , Amino Acid Sequence
9.
J Org Chem ; 89(10): 6877-6891, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38662908

ABSTRACT

Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.


Subject(s)
Ammonium Compounds , Anions , Arginine , Guanidine , Lysine , Guanidine/chemistry , Anions/chemistry , Arginine/chemistry , Ammonium Compounds/chemistry , Lysine/chemistry , Molecular Dynamics Simulation
10.
Water Sci Technol ; 89(8): 2132-2148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678414

ABSTRACT

Given the substantial environmental pollution from industrial expansion, environmental protection has become particularly important. Nowadays, anion exchange membranes (AEMs) are widely used in wastewater treatment. With the use of polyvinyl alcohol (PVA), ethylene-vinyl alcohol (EVOH) copolymer, and methyl iminodiacetic acid (MIDA), a series of cross-linked AEMs were successfully prepared using the solvent casting technique, and the network structure was formed in the membranes due to the cross-linking reaction between PVA/EVOH and MIDA. Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to analyze the prepared membranes. At the same time, its comprehensive properties which include water uptake, linear expansion rate, ion exchange capacity, thermal stability, chemical stability, and mechanical stability were thoroughly researched. In addition, diffusion dialysis performance in practical applications was also studied in detail. The acid dialysis coefficient (UH+) ranged from 10.2 to 35.6 × 10-3 m/h. Separation factor (S) value ranged from 25 to 38, which were all larger than that of the commercial membrane DF-120 (UH+: 8.5 × 10-3 m/h, S: 18.5). The prepared membranes had potential application value in acid recovery.


Subject(s)
Membranes, Artificial , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Imino Acids/chemistry , Diffusion , Water Purification/methods , Dialysis/methods , Ion Exchange , Anions/chemistry , Polyvinyls/chemistry
11.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673814

ABSTRACT

Over the past three decades, the synthesis of new ionic liquids (ILs) and the expansion of their use in newer applications have grown exponentially. From the beginning of this vertiginous period, it was known that many of them were hygroscopic, which in some cases limited their use or altered the value of their measured physical properties with all the problems that this entails. In an earlier article, we addressed the hygroscopic grade achieved by the ILs 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium ethyl sulfate, 1-ethyl-3-methylpyridinium ethyl sulfate, 1-ethyl-3-methylimidazolium tosylate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-dodecyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide, 1-methyl-1-propylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, and methyl trioctyl ammonium bis(trifluoromethyl sulfonyl)imide. The objective was to determine the influence of the chemical nature of the compounds, exposed surface area, sample volume, agitation, and temperature. For this purpose, we exposed the samples to abrupt increases in relative humidity from 15 to 100% for days in an atmosphere chamber and then proceeded with the reverse process in a gentle manner. The results show that the sorption of water from the atmosphere depends on the nature of the IL, especially the anion, with the chloride anion being of particular importance (chloride ≫ alkyl sulfates~bromide > tosylate ≫ tetrafluoroborate). It has also been proven for the EMIM-ES and EMIM-BF4 samples that the mechanism of moisture capture is both absorption and adsorption, and that the smaller the exposed surface area, the higher the ratio of the mass of water per unit area.


Subject(s)
Anions , Cations , Ionic Liquids , Ionic Liquids/chemistry , Anions/chemistry , Cations/chemistry , Imidazoles/chemistry , Wettability , Water/chemistry
12.
Environ Sci Technol ; 58(17): 7628-7635, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38646668

ABSTRACT

Partitioning from water to nonaqueous phases is an important process that controls the behavior of contaminants in the environment and biota. However, for ionic chemicals including many perfluoroalkyl and polyfluoroalkyl substances (PFAS), environmentally relevant partition coefficients cannot be predicted using the octanol/water partition coefficient, which is commonly used as a hydrophobicity indicator for neutral compounds. As an alternative, this study measured C18 liquid chromatography retention times of 39 anionic PFAS and 20 nonfluorinated surfactants using isocratic methanol/water eluent systems. By measuring a series of PFAS with different perfluoroalkyl chain lengths, retention factors at 100% water (k0) were successfully extrapolated even for long-chain PFAS. Molecular size was the most important factor determining the k0 of PFAS and non-PFAS, suggesting that the cavity formation process is the key driver for retention. Log k0 showed a high correlation with the log of partition coefficients from water to the phospholipid membrane, air/water interface, and soil organic carbon. The results indicate the potential of C18 retention factors as predictive descriptors for anionic PFAS partition coefficients and the possibility of developing a more comprehensive multiparameter model for the partitioning of anionic substances in general.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Anions/chemistry , Adsorption , Fluorocarbons/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Chromatography, Liquid
13.
Int J Biol Macromol ; 267(Pt 2): 131521, 2024 May.
Article in English | MEDLINE | ID: mdl-38608976

ABSTRACT

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower ß-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher ß-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.


Subject(s)
Emulsions , Fish Oils , Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Solubility , Soybean Proteins , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Plant Gums/chemistry , Emulsions/chemistry , Soybean Proteins/chemistry , Galactans/chemistry , Fish Oils/chemistry , Anions/chemistry
14.
Biophys Chem ; 310: 107248, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653174

ABSTRACT

Understanding oligomerization and aggregation of the amyloid-ß protein is important to elucidate the pathological mechanisms of Alzheimer's disease, and lipid membranes play critical roles in this process. In addition to studies reported by other groups, our group has also reported that the negatively-charged lipid bilayers with a high positive curvature induced α-helix-to-ß-sheet conformational transitions of amyloid-ß-(1-40) upon increase in protein density on the membrane surface and promoted amyloid fibril formation of the protein. Herein, we investigated detailed mechanisms of the conformational transition and oligomer formation of the amyloid-ß protein on the membrane surface. Changes in the fractions of the three protein conformers (free monomer, membrane-bound α-helix-rich conformation, and ß-sheet-rich conformation) were determined from the fluorescent spectral changes of the tryptophan probe in the protein. The helix-to-sheet structural transition on the surface was described by a thermodynamic model of octamer formation driven by entropic forces including hydrophobic interactions. These findings provide useful information for understanding the self-assembly of amyloidogenic proteins on lipid membrane surfaces.


Subject(s)
Amyloid beta-Peptides , Phospholipids , Thermodynamics , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Phospholipids/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Anions/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation, beta-Strand , Protein Structure, Secondary , Humans , Protein Multimerization
15.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687950

ABSTRACT

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Subject(s)
Anions , Hydroxides , Ozone , Ozone/chemistry , Hydroxides/chemistry , Catalysis , Anions/chemistry
16.
Chemosphere ; 358: 141980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670508

ABSTRACT

Generally, the pH of fluorinated groundwater or many industrial wastewater is neutral, while the majority of metal-modified adsorbents can work efficiently only under acidic conditions. In this study, we synthesized a novel hybrid adsorbent, Mg-Zr-D213, by loading nano-Mg/Zr binary metal (hydrogen) oxides in a strong-base anion exchanger, D213, to enhance the adsorption of fluoride from neutral water. Mg-Zr-D213 exhibited a better fluoride-removal capacity in neutral water than monometallic modified resins. Under the interference of competing anions and coexisting organic acids, Mg-Zr-D213 exhibited superior selectivity. The Langmuir model indicated that the fitted maximum sorption capacity of Mg-Zr-D213 was 41.38 mg/g. The results of column experiments showed that the effective treatment volume of Mg-Zr-D213 was 8-16-times higher than that of D213 for both synthetic groundwater and actual industrial wastewater, and that NaOH-NaCl eluent could effectively recover more than 95% of fluoride. Adsorption experiments with Mg/Zr metal (hydrogen) oxide particles and D213 separately demonstrated a synergistic effect between -N+(CH3)3 and Mg/Zr metal (hydrogen) oxide particles. The ligand exchange or metal-ligand interaction of Mg/Zr metal (hydrogen) oxide particles on fluoride was further demonstrated via X-ray photoelectron spectroscopy. Overall, Mg-Zr-D213 has great potential for enhanced fluoride removal in neutral water.


Subject(s)
Fluorides , Groundwater , Metal Nanoparticles , Water Pollutants, Chemical , Water Purification , Zirconium , Fluorides/chemistry , Adsorption , Zirconium/chemistry , Water Pollutants, Chemical/chemistry , Metal Nanoparticles/chemistry , Groundwater/chemistry , Water Purification/methods , Anions/chemistry , Wastewater/chemistry , Oxides/chemistry , Hydrogen-Ion Concentration
17.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38574599

ABSTRACT

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Subject(s)
Anions , Chromatography, Reverse-Phase , Molybdenum , Phosphoric Acids , Anions/chemistry , Molybdenum/chemistry , Phosphoric Acids/chemistry , Chromatography, Reverse-Phase/methods , Chromatography, High Pressure Liquid/methods , Limit of Detection
18.
J Phys Chem B ; 128(15): 3605-3613, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38592238

ABSTRACT

Since Hofmeister's seminal studies in the late 19th century, it has been known that salts and buffers can drastically affect the properties of peptides and proteins. These Hofmeister effects can be conceived of in terms of three distinct phenomena/mechanisms: water-salt interactions that indirectly induce the salting-out of a protein by water sequestration by the salt, and direct salt-protein interactions that can either salt-in or salt-out the protein. Unfortunately, direct salt-protein interactions responsible for Hofmeister effects are weak and difficult to quantify. As such, they are frequently construed of as being nonspecific. Nevertheless, there has been considerable effort to better specify these interactions. Here, we use pentapeptides to demonstrate the utility of the H-dimension of nuclear magnetic resonance (NMR) spectroscopy to assess anion binding using N-H signal shifts. We qualify binding using these, demonstrating the upfield shifts induced by anion association and revealing how they are much larger than the corresponding downfield shifts induced by magnetic susceptibility and other ionic strength change effects. We also qualify binding in terms of how the pattern of signal shifts changes with point mutations. In general, we find that the observed upfield shifts are small compared with those induced by anion binding to amide-based hosts, and MD simulations suggest that this is so. Thus, charge-diffuse anions associate mostly with the nonpolar regions of the peptide rather than directly interacting with the amide N-H groups. These findings reveal the utility of 1H NMR spectroscopy for qualifying affinity to peptides─even when affinity constants are very low─and serve as a benchmark for using NMR spectroscopy to study anion binding to more complex systems.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Anions/chemistry , Proteins/chemistry , Amides/chemistry , Sodium Chloride , Water
19.
J Chromatogr A ; 1722: 464871, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593520

ABSTRACT

Mixed-mode reversed-phase/anion-exchange chromatography (RP/AEX) is an effective method for the chromatographic analysis of acidic drugs because it combines reversed-phase chromatography (RP) with anion-exchange chromatography (AEX). However, the result repeatability for the RP/AEX analysis of acidic drugs is frequently compromised by the detrimental effects of residual silanol groups in an RP/AEX stationary phase on peak separation and analyte retention. In this study, an RP/weak-AEX stationary phase with amino anion-exchange groups, Sil-AA, was prepared. Subsequently, an RP/strong-AEX stationary phase, Sil-PBQA, was prepared by replacing the amino groups in Sil-AA with a benzene ring and a benzyl-containing quaternary ammonium salt. The chromatographic behaviors of Sil-PBQA and Sil-AA were compared, and the effect of residual silanol groups on the chromatographic behavior of an RP/AEX stationary phase was evaluated. Residual silanol groups not only caused additional electrostatic interactions for acidic analytes, but also competed with the analytes for the anion-exchange sites in an RP/AEX stationary phase. The effects of different salt-containing mobile-phase systems on the analyte-retention behavior of Sil-PBQA were investigated to develop a method that enhanced the repeatability of the RP/AEX acidic-analyte-analysis results obtained using Sil-PBQA and facilitated the separation of nonsteroidal anti-inflammatory drugs on Sil-PBQA. The ideas presented in this paper can improve the separation of peaks and repeatability of results in the RP/AEX analysis of acidic drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Chromatography, Reverse-Phase , Chromatography, Reverse-Phase/methods , Chromatography, Ion Exchange/methods , Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anions/chemistry , Anions/analysis , Reproducibility of Results , Silanes/chemistry , Hydrogen-Ion Concentration , Chromatography, High Pressure Liquid/methods
20.
Angew Chem Int Ed Engl ; 63(22): e202403314, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38517056

ABSTRACT

Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.


Subject(s)
Hydrogen Bonding , Anions/chemistry , Ionophores/chemistry , Oxidation-Reduction , Molecular Structure , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...