Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.550
Filter
1.
Zhonghua Yi Xue Za Zhi ; 104(21): 1994-1997, 2024 Jun 04.
Article in Chinese | MEDLINE | ID: mdl-38825943

ABSTRACT

The patients with temporal lobe epilepsy (TLE) admitted in the Department of Neurology, Zhongshan Hospital, Fudan University from June 2009 to February 2012 were prospectively enrolled. The diffusion tensor imaing was performed on the patients at the time of enrollment and 3 years later. The fractional anisotropy (FA) values of the white matter connecting fibers(bilateral hooked, arcuate, cingulate, and superior longitudinal tracts), the connecting fibers of both hemispheres(anterior union, anterior callosal forceps, posterior forceps, and bilateral fornix), and fibers of perirhinal cortices system(bilateral radiating crown and anterior limb of the internal capsule) were measured by the region of interest method. The severity of epilepsy was evaluated using the Veterans Administration Seizure Type and Frequency Rating Scale(VA-2) and National Hospital Seizure Severity Scale (NHS3). A total of 51 patients with TLE were screened, with 27 patients completing the 3-year follow-up. There were 13 males and 14 females with an age of (32±11) years and a follow-up duration of (39.1±1.1) months. During the follow-up, 6 patients had increased/unchanged NHS3 or VA-2 scores, while 21 patients had decreased scores. Three years later, the FA values of the bilateral arcuate fasciculus, the right superior longitudinal fasciculus, the right radial coronal and corpus callosum anterior forceps in TLE patients decreased compared to baseline(P<0.05). However, compared to the patients with decreased VA-2 scores during the follow-up, the degree of increase in FA values (ΔFA, follow-up FA value-baseline FA value) of the ipsilateral hook bundle caused by epilepsy was more significant in the group with increased/unchanged VA-2 scores (decreased score group vs increased/unchanged score group:-0.032±0.063 vs 0.018±0.043, t=2.305, P=0.035). The value of ΔFA in epileptic patients with increased/unchanged NHS3 scores (0.075±0.113) was higher compared to those with decreased scores (-0.079±0.099, t=2.804, P=0.010). Correlation analysis also showed the changes in FA values of epileptic lateral fasciculus (r=0.503, P=0.009) and arcuate fasciculus (r=0.602, P=0.001)were positively correlated with the changes in VA-2 and HNS3 scores, respectively. The seizure severity in patients with TLE was closely associated with the microstructure changes in the frontal and temporal white matter, especially the arcuate and uncinate tracts, on the same side that caused seizures, which may indicate the white matter remodeling and abnormal network reformation associated with seizures.


Subject(s)
Diffusion Tensor Imaging , Epilepsy, Temporal Lobe , Seizures , White Matter , Humans , Male , Female , Adult , White Matter/diagnostic imaging , Prospective Studies , Anisotropy , Middle Aged , Temporal Lobe
2.
Sci Rep ; 14(1): 12891, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839940

ABSTRACT

Tractography has become a widely available tool for the planning of neurosurgical operations as well as for neuroscientific research. The absence of patient interaction makes it easily applicable. However, it leaves uncertainty about the functional relevance of the identified bundles. We retrospectively analyzed the correlation of white matter markers with their clinical function in 24 right-handed patients who underwent first surgery for high-grade glioma. Morphological affection of the corticospinal tract (CST) and grade of paresis were assessed before surgery. Tractography was performed manually with MRTrix3 and automatically with TractSeg. Median and mean fractional anisotropy (FA) from manual tractography showed a significant correlation with CST affection (p = 0.008) and paresis (p = 0.015, p = 0.026). CST affection correlated further most with energy, and surface-volume ratio (p = 0.014) from radiomic analysis. Paresis correlated most with maximum 2D column diameter (p = 0.005), minor axis length (p = 0.006), and kurtosis (p = 0.008) from radiomic analysis. Streamline count yielded no significant correlations. In conclusion, mean or median FA can be used for the assessment of CST integrity in high-grade glioma. Also, several radiomic parameters are suited to describe tract integrity and may be used to quantitatively analyze white matter in the future.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Glioma , Pyramidal Tracts , White Matter , Humans , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Glioma/diagnostic imaging , Glioma/pathology , Male , Female , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Retrospective Studies , Adult , Aged , Neoplasm Grading , Anisotropy , Paresis/diagnostic imaging , Paresis/pathology , Paresis/etiology , Paresis/physiopathology , Radiomics
3.
BMC Psychol ; 12(1): 324, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831468

ABSTRACT

Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.


Subject(s)
Diffusion Tensor Imaging , Extinction, Psychological , White Matter , Humans , Male , Female , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Adult , Young Adult , Extinction, Psychological/physiology , Learning/physiology , Neural Pathways/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/anatomy & histology , Anisotropy
4.
BMC Musculoskelet Disord ; 25(1): 450, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844898

ABSTRACT

OBJECTIVE: To investigate the brain mechanism of non-correspondence between imaging presentations and clinical symptoms in cervical spondylotic myelopathy (CSM) patients and to test the utility of brain imaging biomarkers for predicting prognosis of CSM. METHODS: Forty patients with CSM (22 mild-moderate CSM, 18 severe CSM) and 25 healthy controls (HCs) were recruited for rs-fMRI and cervical spinal cord diffusion tensor imaging (DTI) scans. DTI at the spinal cord (level C2/3) with fractional anisotropy (FA) and degree centrality (DC) were recorded. Then one-way analysis of covariance (ANCOVA) was conducted to detect the group differences in the DC and FA values across the three groups. Pearson correlation analysis was then separately performed between JOA with FA and DC. RESULTS: Among them, degree centrality value of left middle temporal gyrus exhibited a progressive increase in CSM groups compared with HCs, the DC value in severe CSM group was higher compared with mild-moderate CSM group. (P < 0.05), and the DC values of the right superior temporal gyrus and precuneus showed a decrease after increase. Among them, DC values in the area of precuneus in severe CSM group were significantly lower than those in mild-moderate CSM and HCs. (P < 0.05). The fractional anisotropy (FA) values of the level C2/3 showed a progressive decrease in different clinical stages, that severe CSM group was the lowest, significantly lower than those in mild-moderate CSM and HCs (P < 0.05). There was negative correlation between DC value of left middle temporal gyrus and JOA scores (P < 0.001), and the FA values of dorsal column in the level C2/3 positively correlated with the JOA scores (P < 0.001). CONCLUSION: Structural and functional changes have taken place in the cervical spinal cord and brain of CSM patients. The Brain reorganization plays an important role in maintaining the symptoms and signs of CSM, aberrant DC values in the left middle temporal gyrus may be the possible mechanism of inconsistency between imaging findings and clinical symptoms. Degree centrality is a potentially useful prognostic functional biomarker in cervical spondylotic myelopathy.


Subject(s)
Cervical Vertebrae , Diffusion Tensor Imaging , Neuronal Plasticity , Severity of Illness Index , Spondylosis , Humans , Male , Female , Middle Aged , Spondylosis/diagnostic imaging , Spondylosis/physiopathology , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/physiopathology , Neuronal Plasticity/physiology , Adult , Magnetic Resonance Imaging , Aged , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology , Case-Control Studies , Anisotropy
5.
Sci Rep ; 14(1): 12961, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839823

ABSTRACT

A variation of the longitudinal relaxation time T 1 in brain regions that differ in their main fiber direction has been occasionally reported, however, with inconsistent results. Goal of the present study was to clarify such inconsistencies, and the origin of potential T 1 orientation dependence, by applying direct sample rotation and comparing the results from different approaches to measure T 1 . A section of fixed porcine spinal cord white matter was investigated at 3 T with variation of the fiber-to-field angle θ FB . The experiments included one-dimensional inversion-recovery, MP2RAGE, and variable flip-angle T 1 measurements at 22 °C and 36 °C as well as magnetization-transfer (MT) and diffusion-weighted acquisitions. Depending on the technique, different degrees of T 1 anisotropy (between 2 and 10%) were observed as well as different dependencies on θ FB (monotonic variation or T 1 maximum at 30-40°). More pronounced anisotropy was obtained with techniques that are more sensitive to MT effects. Furthermore, strong correlations of θ FB -dependent MT saturation and T 1 were found. A comprehensive analysis based on the binary spin-bath model for MT revealed an interplay of several orientation-dependent parameters, including the transverse relaxation times of the macromolecular and the water pool as well as the longitudinal relaxation time of the macromolecular pool.


Subject(s)
Spinal Cord , Water , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Swine , Anisotropy , Spinal Cord/physiology , Protons , Rotation
7.
Hum Brain Mapp ; 45(8): e26706, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38867646

ABSTRACT

We aimed to compare the ability of diffusion tensor imaging and multi-compartment spherical mean technique to detect focal tissue damage and in distinguishing between different connectivity patterns associated with varying clinical outcomes in multiple sclerosis (MS). Seventy-six people diagnosed with MS were scanned using a SIEMENS Prisma Fit 3T magnetic resonance imaging (MRI), employing both conventional (T1w and fluid-attenuated inversion recovery) and advanced diffusion MRI sequences from which fractional anisotropy (FA) and microscopic FA (µFA) maps were generated. Using automated fiber quantification (AFQ), we assessed diffusion profiles across multiple white matter (WM) pathways to measure the sensitivity of anisotropy diffusion metrics in detecting localized tissue damage. In parallel, we analyzed structural brain connectivity in a specific patient cohort to fully grasp its relationships with cognitive and physical clinical outcomes. This evaluation comprehensively considered different patient categories, including cognitively preserved (CP), mild cognitive deficits (MCD), and cognitively impaired (CI) for cognitive assessment, as well as groups distinguished by physical impact: those with mild disability (Expanded Disability Status Scale [EDSS] <=3) and those with moderate-severe disability (EDSS >3). In our initial objective, we employed Ridge regression to forecast the presence of focal MS lesions, comparing the performance of µFA and FA. µFA exhibited a stronger association with tissue damage and a higher predictive precision for focal MS lesions across the tracts, achieving an R-squared value of .57, significantly outperforming the R-squared value of .24 for FA (p-value <.001). In structural connectivity, µFA exhibited more pronounced differences than FA in response to alteration in both cognitive and physical clinical scores in terms of effect size and number of connections. Regarding cognitive groups, FA differences between CP and MCD groups were limited to 0.5% of connections, mainly around the thalamus, while µFA revealed changes in 2.5% of connections. In the CP and CI group comparison, which have noticeable cognitive differences, the disparity was 5.6% for FA values and 32.5% for µFA. Similarly, µFA outperformed FA in detecting WM changes between the MCD and CI groups, with 5% versus 0.3% of connections, respectively. When analyzing structural connectivity between physical disability groups, µFA still demonstrated superior performance over FA, disclosing a 2.1% difference in connectivity between regions closely associated with physical disability in MS. In contrast, FA spotted a few regions, comprising only 0.6% of total connections. In summary, µFA emerged as a more effective tool than FA in predicting MS lesions and identifying structural changes across patients with different degrees of cognitive and global disability, offering deeper insights into the complexities of MS-related impairments.


Subject(s)
Diffusion Tensor Imaging , Multiple Sclerosis , White Matter , Humans , Female , Male , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Anisotropy , Adult , Diffusion Tensor Imaging/methods , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology
8.
Hum Brain Mapp ; 45(8): e26722, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780442

ABSTRACT

In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.


Subject(s)
Diffusion Magnetic Resonance Imaging , Ischemic Stroke , White Matter , Humans , Male , Aged , Female , Middle Aged , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Longitudinal Studies , Water , Brain/diagnostic imaging , Brain/pathology , Anisotropy
9.
Article in Chinese | MEDLINE | ID: mdl-38811178

ABSTRACT

Objective: To explore the brain white matter damage in patients with moderate to severe obstructive sleep apnea hypopnea syndrome(OSAHS) using diffusional kurtosis imaging(DKI), and to analyze its relationship with anxiety, depression and cognitive impairment in patients. Methods: This was a retrospective case-control study. Fifty confirmed cases (47 males and 3 females) of moderate to severe OSAHS diagnosed by polysomnography(PSG) from November 2017 to December 2022 were selected as OSAHS group(age range from 22 to 65 years old, with median age of 40 years old), and 32 healthy controls(27 males and 5 females) of non-OSAHS diagnosed by PSG were selected as control group(age range from 19 to 56 years old, with median age of 34 years old). DKI scanning, Beck Anxiety Inventory(BAI), Beck Depression Inventory-Ⅱ(BDI-Ⅱ), and Montreal cognitive assessment(MoCA) scores were performed in all subjects. Differences in kurtosis fractional anisotropy(KFA) of various brain regions were compared between the two groups to identify differential brain regions. Correlations were analyzed between KFA reduction and anxiety, depression, and cognitive impairment in OSAHS patients. To study the correlation between brain injury and anxiety, depressive mood, and cognitive dysfunction, statistical methods such as non-parametric tests for two independent samples, chi-square tests, and partial correlation analysis, were used to analyze the evaluation indicators of the two groups. Results: The KFA values in right external capsule, left anterior corona radiata, right anterior corona radiata, left posterior corona radiata, right posterior corona radiata, left superior corona radiata, right superior corona radiata, left superior longitudinal fasciculus, right superior longitudinal fasciculus, genu of corpus callosum, splenium of corpus callosum, body of corpus callosum, posterior cingulate gyrus of moderate to severe OSAHS group were all lower than those in the control group(t=-2.247, -3.028, -3.955, -4.871, -2.632, -2.594, -2.121, -2.167, -3.129, -2.015, -2.317, -2.313, -2.152,P<0.05). For the moderate to severe OSAHS group, the correlation between AHI and KFA values of right posterior corona radiata, right superior corona radiata, left anterior corona radiata, left posterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all negative(r=-0.378, -0.307, -0.337, -0.343, -0.341, -0.613, -0.390, -0.384, -0.396, P<0.05). The correlation between LSO2 and KFA values of right anterior corona radiata, right posterior corona radiata, right superior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, left posterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum, posterior cingulate gyrus were all positive(r=0.330, 0.338, 0.425, 0.312, 0.433, 0.358, 0.410, 0.459, 0.473, 0.659, 0.489, 0.356, P<0.05). The correlation between BAI scores and KFA values of right external capsule, right anterior corona radiata, left posterior corona radiata, left superior corona radiata, body of corpus callosum, splenium of corpus callosum were all negative(r=-0.306, -0.372, -0.296, -0.346, -0.318, -0.386, P<0.05). The correlation between BDI-Ⅱ scores and KFA values of right superior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all negative(r=-0.334, -0.289, -0.309, -0.310, -0.503, -0.469, P<0.05). The correlation between MoCA scores and KFA values of right posterior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all positive(r=0.368, 0.431, 0.324, 0.410, 0.469, 0.384, 0.369, 0.309, P<0.05). Conclusions: With the aggravation of OSAHS, the damage to some brain regions becomes more pronounced in moderate to severe OSAHS patients. These damage brain functional areas are closely related to the anxiety, depression, and cognitive impairment of patients.


Subject(s)
Anxiety , Cognitive Dysfunction , Depression , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/diagnostic imaging , Male , Adult , Female , Middle Aged , Case-Control Studies , Retrospective Studies , Cognitive Dysfunction/etiology , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Polysomnography , Aged , Young Adult , Brain/diagnostic imaging , Brain/pathology , Anisotropy
10.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717602

ABSTRACT

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Porosity , Silicon Dioxide/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Anisotropy , Nerve Regeneration/drug effects , Hydrophobic and Hydrophilic Interactions , Apoptosis/drug effects , Rats , Nanostructures/chemistry , Mice , Particle Size , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology
11.
Biomater Adv ; 161: 213885, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743993

ABSTRACT

Essential organs, such as the heart and liver, contain a unique porous network that allows oxygen and nutrients to be exchanged, with distinct random to ordered regions displaying varying degrees of strength. A novel technique, referred to here as flow-induced lithography, was developed. This technique generates tunable anisotropic three-dimensional (3D) structures. The ink for this bioprinting technique was made of titanium dioxide nanorods (Ti) and kaolinite nanoclay (KLT) dispersed in a GelMA/PEGDA polymeric suspension. By controlling the flow rate, aligned particle microstructures were achieved in the suspensions. The application of UV light to trigger the polymerization of the photoactive prepolymer freezes the oriented particles in the polymer network. Because the viability test was successful in shearing suspensions containing cells, the flow-induced lithography technique can be used with both acellular scaffolds and cell-laden structures. Fabricated hydrogels show outstanding mechanical properties resembling human tissues, as well as significant cell viability (> 95 %) over one week. As a result of this technique and the introduction of bio-ink, a novel approach has been pioneered for developing anisotropic tissue implants utilizing low-viscosity biomaterials.


Subject(s)
Hydrogels , Printing, Three-Dimensional , Stereolithography , Tissue Scaffolds , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Anisotropy , Humans , Titanium/chemistry , Tissue Engineering/methods , Cell Survival , Bioprinting/methods
12.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699877

ABSTRACT

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Subject(s)
Hydrogels , Nanofibers , Peptides , Nanofibers/chemistry , Peptides/chemistry , Hydrogels/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Anisotropy , Animals
13.
Comput Biol Med ; 176: 108552, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754219

ABSTRACT

Severe aortic valve stenosis can lead to heart failure and aortic valve replacement (AVR) is the primary treatment. However, increasing prevalence of aortic stenosis cases reveal limitations in current replacement options, necessitating improved prosthetic aortic valves. We investigate flow disturbances downstream of severe aortic stenosis and two bioprosthetic aortic valve (BioAV) designs using advanced energy-based analyses. Three-dimensional high-fidelity fluid-structure interaction simulations have been conducted and a dedicated and novel spectral analysis has been developed to characterise the kinetic energy (KE) carried by eddies in the wavenumber space. In addition, new field quantities, i.e. modal KE anisotropy intensity as well as normalised helicity intensity, are introduced. Spectral analysis shows kinetic energy (KE) decay variations, with the stenotic case aligning with Kolmogorov's theory, while BioAV cases differing. We explore the impact of flow helicity on KE transfer and decay in BioAVs. Probability distributions of modal KE anisotropy unveil flow asymmetries in the stenotic and one BioAV cases. Moreover, an inverse correlation between temporally averaged modal KE anisotropy and normalised instantaneous helicity intensity is noted, with the coefficient of determination varying among the valve configurations. Leaflet dynamics analysis highlights a stronger correlation between flow and biomechanical KE anisotropy in one BioAV due to higher leaflet displacement magnitude. These findings emphasise the role of valve architecture in aortic turbulence as well as its importance for BioAV performance and energy-based design enhancement.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis , Hemodynamics , Models, Cardiovascular , Humans , Aortic Valve/physiopathology , Aortic Valve/surgery , Anisotropy , Hemodynamics/physiology , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging
14.
J Affect Disord ; 358: 309-317, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703905

ABSTRACT

BACKGROUND: Cumulative evidence has consistently shown that white matter (WM) disruption is associated with cognitive decline in geriatric depression. However, limited research has been conducted on the correlation between these lesions and cognitive performance in untreated young adults with major depressive disorder (MDD), particularly with the specific segmental alterations of the fibers. METHOD: Diffusion tensor images were performed on 60 first-episode, treatment-naïve young adult patients with MDD and 54 matched healthy controls (HCs). Automated fiber quantification was applied to calculate the tract profiles of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) to evaluate the WM microstructural organization. Correlation analysis was performed to find the associations between the diffusion properties and cognitive performance. RESULTS: Compared with HCs, patients with MDD exhibited predominantly different diffusion properties in bilateral uncinate fasciculus (UF), corticospinal tracts (CSTs), left superior longitudinal fasciculus and anterior thalamic radiation. The FA of the temporal cortex portion of right UF was positively correlated with working memory. The MD of the temporal component of left UF was negatively correlated with working memory and positively correlated with symptom severity. Additionally, a positive correlation between the MD of left CST and the psychomotor speed, negative correlation between the MD of left CST and the executive functions and complex attentional processes were observed. CONCLUSIONS: Our study validated the alterations in spatial localization of WM microstructure and its correlations with cognitive performance in first-episode, treatment-naïve young adults with MDD. This study added to the knowledge of the neuropathological basis of MDD.


Subject(s)
Depressive Disorder, Major , Diffusion Tensor Imaging , White Matter , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Young Adult , Adult , Cognition , Memory, Short-Term/physiology , Anisotropy , Neuropsychological Tests , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Case-Control Studies , Adolescent , Brain/pathology , Brain/diagnostic imaging
15.
Lab Chip ; 24(11): 2999-3014, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742451

ABSTRACT

The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.


Subject(s)
Cell Movement , Cell Proliferation , Collagen , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Cell Line, Tumor , Collagen/chemistry , Collagen/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Anisotropy , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
16.
Soft Matter ; 20(21): 4282-4290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757720

ABSTRACT

The multicomponent relaxation observed in nuclear magnetic resonance experiments in biological tissues makes it difficult to establish a correlation between specific relaxation times and tissue structural parameters. The analysis of a nanostructure (the characteristic size of 10-1000 nm) is usually based on formulas for relaxation times which depend on structural parameters at the atomic or molecular levels in the size range of 0.1-5 nm. We have recently developed an analysis method in which relaxation times' anisotropy in a sample is explicitly related to its structure of nanocavities containing a liquid or gas. However, the method is based on the analysis of experimental data on the anisotropy of relaxation times obtained by using the standard NMR technique and rotating the sample relative to a magnetic field and requires a series of experiments. In the present study, to address this challenge, we develop a new method of analysis of a multi-exponential magnetic resonance signal that does not require determining relaxation times and eliminates the sample rotation and the necessity of a series of experiments. Using the magnetic resonance imaging (MRI) technique, the total signal from the whole sample was obtained as a sum of the signals (echo decays) from all voxels. In contrast to previous research, the volumes of nanocavities and their angular distribution can be obtained by analyzing a single total signal for the entire cartilage. In addition, within the framework of this approach, it is possible to identify the reason for the multicomponent nature of relaxation. The proposed method for analyzing a single multi-exponential signal (transverse relaxation) was implemented on cartilage. Using the signal, three anatomical zones of cartilage were studied, revealing significant structural differences between them. The proposed method not only avoids the need for sample rotation but also enables repeated application of layer-by-layer magnetic resonance imaging with micron resolution. The study results allow us to suggest that water molecules contributing to the echo decay are more likely located in nanocavities formed by the fibrillar structure rather than inside the fibrils.


Subject(s)
Collagen , Magnetic Resonance Imaging , Nanostructures , Magnetic Resonance Imaging/methods , Nanostructures/chemistry , Collagen/chemistry , Animals , Anisotropy , Cattle
17.
Psychiatry Res ; 337: 115966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810536

ABSTRACT

Decreased white matter (WM) integrity and disturbance in fatty acid composition have been reported in individuals at ultra-high risk of psychosis (UHR). The current study is the first to investigate both WM integrity and erythrocyte membrane polyunsaturated fatty acid (PUFA) levels as potential risk biomarkers for persistent UHR status, and global functioning in UHR individuals. Forty UHR individuals were analysed at baseline for erythrocyte membrane PUFA concentrates. Tract-based spatial statistics (TBSS) was used to analyse fractional anisotropy (FA) and diffusivity measures. Measures of global functioning and psychiatric symptoms were evaluated at baseline and at 12-months. Fatty acids and WM indices did not predict functional outcomes at baseline or 12-months. Significant differences were found in FA between UHR remitters and non-remitters (individuals who no longer met UHR criteria versus those who continued to meet criteria at 12-months). Docosahexaenoic acid (DHA) was found to be a significant predictor of UHR status at 12-months, as was the interaction between the sum of ώ-3 and whole brain FA, and the interaction between the right anterior limb of the internal capsule and the sum of ώ-3. The results confirm that certain fatty acids have a unique relationship with WM integrity in UHR individuals.


Subject(s)
Erythrocyte Membrane , Myelin Sheath , Psychotic Disorders , Humans , Psychotic Disorders/metabolism , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Male , Female , Erythrocyte Membrane/metabolism , Young Adult , Adolescent , Myelin Sheath/metabolism , Myelin Sheath/pathology , Anisotropy , White Matter/diagnostic imaging , White Matter/pathology , White Matter/metabolism , Fatty Acids/metabolism , Adult , Diffusion Tensor Imaging , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Docosahexaenoic Acids/metabolism , Psychiatric Status Rating Scales , Fatty Acids, Unsaturated/metabolism
18.
PLoS One ; 19(5): e0301520, 2024.
Article in English | MEDLINE | ID: mdl-38758830

ABSTRACT

White matter (WM) changes occur throughout the lifespan at a different rate for each developmental period. We aggregated 10879 structural MRIs and 6186 diffusion-weighted MRIs from participants between 2 weeks to 100 years of age. Age-related changes in gray matter and WM partial volumes and microstructural WM properties, both brain-wide and on 29 reconstructed tracts, were investigated as a function of biological sex and hemisphere, when appropriate. We investigated the curve fit that would best explain age-related differences by fitting linear, cubic, quadratic, and exponential models to macro and microstructural WM properties. Following the first steep increase in WM volume during infancy and childhood, the rate of development slows down in adulthood and decreases with aging. Similarly, microstructural properties of WM, particularly fractional anisotropy (FA) and mean diffusivity (MD), follow independent rates of change across the lifespan. The overall increase in FA and decrease in MD are modulated by demographic factors, such as the participant's age, and show different hemispheric asymmetries in some association tracts reconstructed via probabilistic tractography. All changes in WM macro and microstructure seem to follow nonlinear trajectories, which also differ based on the considered metric. Exponential changes occurred for the WM volume and FA and MD values in the first five years of life. Collectively, these results provide novel insight into how changes in different metrics of WM occur when a lifespan approach is considered.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Adult , Male , Female , Adolescent , Middle Aged , Aged , Young Adult , Child , Aged, 80 and over , Infant , Child, Preschool , Aging/physiology , Longevity , Infant, Newborn , Diffusion Tensor Imaging , Diffusion Magnetic Resonance Imaging , Anisotropy , Brain/diagnostic imaging , Brain/growth & development , Gray Matter/diagnostic imaging
19.
ACS Nano ; 18(20): 12957-12969, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720633

ABSTRACT

In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.


Subject(s)
Molecular Dynamics Simulation , Nanoparticles , Nanoparticles/chemistry , Lipids/chemistry , Anisotropy
20.
Addict Biol ; 29(5): e13400, 2024 May.
Article in English | MEDLINE | ID: mdl-38706091

ABSTRACT

Substance use disorders are characterized by inhibition deficits related to disrupted connectivity in white matter pathways, leading via interaction to difficulties in resisting substance use. By combining neuroimaging with smartphone-based ecological momentary assessment (EMA), we questioned how biomarkers moderate inhibition deficits to predict use. Thus, we aimed to assess white matter integrity interaction with everyday inhibition deficits and related resting-state network connectivity to identify multi-dimensional predictors of substance use. Thirty-eight patients treated for alcohol, cannabis or tobacco use disorder completed 1 week of EMA to report substance use five times and complete Stroop inhibition testing twice daily. Before EMA tracking, participants underwent resting state functional MRI and diffusion tensor imaging (DTI) scanning. Regression analyses were conducted between mean Stroop performances and whole-brain fractional anisotropy (FA) in white matter. Moderation testing was conducted between mean FA within significant clusters as moderator and the link between momentary Stroop performance and use as outcome. Predictions between FA and resting-state connectivity strength in known inhibition-related networks were assessed using mixed modelling. Higher FA values in the anterior corpus callosum and bilateral anterior corona radiata predicted higher mean Stroop performance during the EMA week and stronger functional connectivity in occipital-frontal-cerebellar regions. Integrity in these regions moderated the link between inhibitory control and substance use, whereby stronger inhibition was predictive of the lowest probability of use for the highest FA values. In conclusion, compromised white matter structural integrity in anterior brain systems appears to underlie impairment in inhibitory control functional networks and compromised ability to refrain from substance use.


Subject(s)
Diffusion Tensor Imaging , Inhibition, Psychological , Magnetic Resonance Imaging , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Female , Adult , Ecological Momentary Assessment , Substance-Related Disorders/physiopathology , Substance-Related Disorders/diagnostic imaging , Stroop Test , Alcoholism/physiopathology , Alcoholism/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Middle Aged , Tobacco Use Disorder/physiopathology , Tobacco Use Disorder/diagnostic imaging , Marijuana Abuse/physiopathology , Marijuana Abuse/diagnostic imaging , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Smartphone , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Anisotropy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...