Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4320, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859916

ABSTRACT

In autosomal dominant polycystic kidney disease (ADPKD) multiple bilateral renal cysts gradually enlarge, leading to a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) are known to drive cyst enlargement. Here we demonstrate that loss of Pkd1 increased expression of TMEM16A and CFTR and Cl- secretion in murine kidneys, with TMEM16A essentially contributing to cyst growth. Upregulated TMEM16A enhanced intracellular Ca2+ signaling and proliferation of Pkd1-deficient renal epithelial cells. In contrast, increase in Ca2+ signaling, cell proliferation and CFTR expression was not observed in Pkd1/Tmem16a double knockout mice. Knockout of Tmem16a or inhibition of TMEM16A in vivo by the FDA-approved drugs niclosamide and benzbromarone, as well as the TMEM16A-specific inhibitor Ani9 largely reduced cyst enlargement and abnormal cyst cell proliferation. The present data establish a therapeutic concept for the treatment of ADPKD.


Subject(s)
Anoctamin-1/genetics , Anoctamin-1/metabolism , Cysts/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Animals , Anoctamin-1/drug effects , Benzbromarone/pharmacology , Calcium Channels , Cell Proliferation , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator , Cysts/drug therapy , Cysts/genetics , Disease Models, Animal , Dogs , Epithelial Cells/metabolism , Humans , Kidney/metabolism , Kidney/pathology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Nephrons/metabolism , Niclosamide/pharmacology , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics
2.
Am J Respir Crit Care Med ; 201(8): 946-954, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31898911

ABSTRACT

Rationale: Enhancing non-CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases.Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance.Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport.Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl- channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional.Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.


Subject(s)
Anoctamin-1/drug effects , Cystic Fibrosis/metabolism , Epithelial Cells/drug effects , Membrane Transport Modulators/pharmacology , Mucociliary Clearance/drug effects , Mucus/drug effects , Administration, Inhalation , Animals , Anoctamin-1/metabolism , Bronchi/cytology , Calcium Signaling/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Ion Transport/drug effects , Patch-Clamp Techniques , Respiration , Respiratory Mucosa/cytology , Sheep , Trachea/drug effects , Trachea/metabolism
3.
Nat Commun ; 10(1): 3769, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434906

ABSTRACT

The calcium-activated chloride channel (CaCC) TMEM16A plays crucial roles in regulating neuronal excitability, smooth muscle contraction, fluid secretion and gut motility. While opening of TMEM16A requires binding of intracellular Ca2+, prolonged Ca2+-dependent activation results in channel desensitization or rundown, the mechanism of which is unclear. Here we show that phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates TMEM16A channel activation and desensitization via binding to a putative binding site at the cytosolic interface of transmembrane segments (TMs) 3-5. We further demonstrate that the ion-conducting pore of TMEM16A is constituted of two functionally distinct modules: a Ca2+-binding module formed by TMs 6-8 and a PIP2-binding regulatory module formed by TMs 3-5, which mediate channel activation and desensitization, respectively. PIP2 dissociation from the regulatory module results in ion-conducting pore collapse and subsequent channel desensitization. Our findings thus provide key insights into the mechanistic understanding of TMEM16 channel gating and lipid-dependent regulation.


Subject(s)
Anoctamin-1/drug effects , Anoctamin-1/metabolism , Calcium/metabolism , Chloride Channel Agonists/metabolism , Chloride Channels/drug effects , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Binding Sites , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Ion Transport/drug effects , Models, Molecular
4.
Adv Exp Med Biol ; 966: 1-14, 2017.
Article in English | MEDLINE | ID: mdl-28293832

ABSTRACT

Multiple studies have described the high expression and amplification of Anoctamin 1 (ANO1) in various cancers, including, but not limited to breast cancer, head and neck cancer, gastrointestinal stromal tumors and glioblastoma. ANO1 has been demonstrated to be critical for tumor growth in breast and head and neck cancers through its regulation of EGFR signaling and pathway modulators like MAPK and protein kinase B. However, the discovery of ANO1 as a calcium activated chloride channel came as a surprise to the field and has given rise to many questions. How does a chloride channel promote oncogenesis? Is the chloride channel function of ANO1 important for its role in cancer? Does ANO1 exhibits chloride-independent functions in cancer cells? This review summarizes the current understanding of ANO1's function in cancer, provides a synopsis of the findings addressing the open questions in the field and gives an outlook on the promising future of ANO1 as a potential therapeutic target for the treatment of various cancers.


Subject(s)
Anoctamin-1/metabolism , Cell Proliferation , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Signal Transduction , Animals , Anoctamin-1/drug effects , Anoctamin-1/genetics , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chlorides/metabolism , Humans , Molecular Targeted Therapy , Neoplasm Proteins/drug effects , Neoplasm Proteins/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction/drug effects , Tumor Burden/drug effects
5.
Pflugers Arch ; 469(5-6): 681-692, 2017 06.
Article in English | MEDLINE | ID: mdl-28124133

ABSTRACT

Calcium-activated chloride channels (CaCCs) play important roles in many physiological processes, and the molecular basis of CaCCs has been identified as TMEM16A in many cell types. It is well established that TMEM16A is a drug target in many diseases, including cystic fibrosis, hypertension, asthma, and various tumors. Therefore, identifying potent and specific modulators of the TMEM16A channel is crucial. In this study, we identified the first natural activator of TMEM16A from traditional Chinese medicine and explored its mechanism. Our data showed that Ginsenoside Rb1 (GRb1) can activate TMEM16A directly from the intracellular side in a dose-dependent manner at an EC50 of 38.4 ± 2.14 µM. GRb1 specifically activated TMEM16A/B, but not the other previously proposed CaCC mediators such as CFTR and bestrophin. Moreover, GRb1 promoted proliferation of CHO cells stably expressing TMEM16A, in a concentration-dependent manner. Finally, we showed that GRb1 increased the amplitude and frequency of contractions in an isolated guinea pig ileum assay in vivo. In summary, GRb1 can be considered a lead compound for the development of novel drugs for the treatment of diseases caused by TMEM16A dysfunction.


Subject(s)
Anoctamin-1/metabolism , Ginsenosides/pharmacology , Ileum/drug effects , Muscle Contraction , Animals , Anoctamin-1/drug effects , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Guinea Pigs , Ileum/physiology , Mice , Muscle, Smooth/drug effects , Muscle, Smooth/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...