Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.272
Filter
1.
J Water Health ; 22(5): 878-886, 2024 May.
Article in English | MEDLINE | ID: mdl-38822466

ABSTRACT

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Seasons , Animals , Anopheles/physiology , Anopheles/parasitology , Cote d'Ivoire/epidemiology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Malaria/transmission , Malaria/epidemiology , Female , Humans , Oryza/parasitology , Agricultural Irrigation , Mosquito Control
2.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833464

ABSTRACT

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Subject(s)
Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
3.
Malar J ; 23(1): 173, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835017

ABSTRACT

BACKGROUND: National Malaria Programmes (NMPs) monitor the durability of insecticide-treated nets (ITNs) to inform procurement and replacement decisions. This is crucial for new dual active ingredients (AI) ITNs, for which less data is available. Pyrethroid-only ITN (Interceptor®) and dual AI (Interceptor® G2, and PermaNet® 3.0) ITNs were assessed across three health districts over 36 months in southern Burkina Faso to estimate median ITN survival, insecticidal efficacy, and to identify factors contributing to field ITN longevity. METHODS: Durability was monitored through a prospective study of a cohort of nets distributed during the 2019 mass campaign. Three health districts were selected for their similar pyrethroid-resistance, environmental, epidemiological, and population profiles. Households were recruited after the mass campaign, with annual household questionnaire follow-ups over three years. Each round, ITNs were withdrawn for bioassays and chemical residue testing. Key measures were the percentage of cohort ITNs in serviceable condition, insecticidal effectiveness, and chemical residue content against target dose. Cox proportional hazard models were used to identify determinants influencing ITN survival. RESULTS: At endline, the median useful life was 3.2 (95% CI 2.5-4.0) years for PermaNet® 3.0 ITNs in Orodara, 2.6 (95% CI 1.9-3.2) years for Interceptor® G2 ITNs in Banfora and 2.4 (95% CI 1.9-2.9) years for Interceptor® ITNs in Gaoua. Factors associated with ITN survival included cohort ITNs from Orodara (adjusted hazard ratio (aHR) = 0.58, p = 0.026), households seeing less rodents (aHR = 0.66, p = 0.005), female-headed households (aHR = 0.66, p = 0.044), exposure to social behavior change (SBC) messages (aHR = 0.52, ≤ 0.001) and folding nets when not in use (aHR = 0.47, p < 0.001). At endline, PermaNet® 3.0 ITN recorded 24-h mortality of 26% against resistant mosquitos on roof panels, with an 84% reduction in PBO content. Interceptor® G2 ITN 72-h mortality was 51%, with a 67% reduction in chlorfenapyr content. Interceptor® ITN 24-h mortality was 71%, with an 84% reduction in alpha-cypermethrin content. CONCLUSION: Only PermaNet® 3.0 ITNs surpassed the standard three-year survival threshold. Identified protective factors should inform SBC messaging. Significant decreases in chemical content and resulting impact on bioefficacy warrant more research in other countries to better understand dual AI ITN insecticidal performance.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Mosquito Control , Burkina Faso , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Prospective Studies , Pyrethrins/pharmacology , Malaria/prevention & control , Animals , Humans , Anopheles/drug effects , Anopheles/physiology , Female
4.
Sci Rep ; 14(1): 12620, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824239

ABSTRACT

Ivermectin (IVM) has been proposed as a new tool for malaria control as it is toxic on vectors feeding on treated humans or cattle. Nevertheless, IVM may have a direct mosquitocidal effect when applied on bed nets or sprayed walls. The potential for IVM application as a new insecticide for long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) was tested in this proof-of-concept study in a laboratory and semi-field environment. Laboratory-reared, insecticide-susceptible Kisumu Anopheles gambiae were exposed to IVM on impregnated netting materials and sprayed plastered- and mud walls using cone bioassays. The results showed a direct mosquitocidal effect of IVM on this mosquito strain as all mosquitoes died by 24 h after exposure to IVM. The effect was slower on the IVM-sprayed walls compared to the treated nettings. Further work to evaluate possibility of IVM as a new insecticide formulation in LLINs and IRS will be required.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Ivermectin , Mosquito Control , Animals , Anopheles/drug effects , Ivermectin/pharmacology , Insecticides/pharmacology , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/drug effects
5.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Malaria, Vivax , Mathematical Concepts , Mosquito Vectors , Plasmodium vivax , Superinfection , Humans , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Superinfection/immunology , Superinfection/transmission , Superinfection/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Disease Reservoirs/parasitology , Models, Biological , Computer Simulation , Anopheles/parasitology , Anopheles/immunology
6.
PLoS One ; 19(5): e0302677, 2024.
Article in English | MEDLINE | ID: mdl-38696463

ABSTRACT

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Subject(s)
ATP-Binding Cassette Transporters , Anopheles , Antioxidants , HSP70 Heat-Shock Proteins , Ocimum , Plant Extracts , Animals , Anopheles/drug effects , Anopheles/genetics , Anopheles/metabolism , Plant Extracts/pharmacology , Antioxidants/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Larva/drug effects , Larva/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Stress, Physiological/drug effects
7.
Malar J ; 23(1): 133, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702775

ABSTRACT

BACKGROUND: Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials. METHODS: Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies. RESULTS: In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test. CONCLUSIONS: Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.


Subject(s)
Malaria , Humans , Malaria/prevention & control , Animals , Research Design , Controlled Clinical Trials as Topic , Models, Statistical , Anopheles/parasitology
8.
Article in English | MEDLINE | ID: mdl-38791773

ABSTRACT

It is widely accepted that climate affects the mosquito life history traits; however, its precise role in determining mosquito distribution and population dynamics is not fully understood. This study aimed to investigate the influence of various climatic factors on the temporal distribution of Anopheles arabiensis populations in Mamfene, South Africa between 2014 and 2019. Time series analysis, wavelet analysis, cross-correlation analysis, and regression model combined with the autoregressive integrated moving average (ARIMA) model were utilized to assess the relationship between climatic factors and An. arabiensis population density. In total 3826 adult An. arabiensis collected was used for the analysis. ARIMA (0, 1, 2) (0, 0, 1)12 models closely described the trends observed in An. arabiensis population density and distribution. The wavelet coherence and time-lagged correlation analysis showed positive correlations between An. arabiensis population density and temperature (r = 0.537 ), humidity (r = 0.495) and rainfall (r = 0.298) whilst wind showed negative correlations (r = -0.466). The regression model showed that temperature (p = 0.00119), rainfall (p = 0.0436), and humidity (p = 0.0441) as significant predictors for forecasting An. arabiensis abundance. The extended ARIMA model (AIC = 102.08) was a better fit for predicting An. arabiensis abundance compared to the basic model. Anopheles arabiensis still remains the predominant malaria vector in the study area and climate variables were found to have varying effects on the distribution and abundance of An. arabiensis. This necessitates other complementary vector control strategies such as the Sterile Insect Technique (SIT) which involves releasing sterile males into the environment to reduce mosquito populations. This requires timely mosquito and climate information to precisely target releases and enhance the effectiveness of the program, consequently reducing the malaria risk.


Subject(s)
Anopheles , Climate , Population Dynamics , Animals , Anopheles/physiology , South Africa , Mosquito Vectors/physiology , Mosquito Vectors/growth & development , Pilot Projects , Population Density , Animal Distribution , Mosquito Control/methods
9.
Science ; 384(6696): 697-703, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723080

ABSTRACT

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Subject(s)
Anopheles , Climate Change , Hydrology , Malaria , Mosquito Vectors , Water , Animals , Humans , Africa/epidemiology , Anopheles/parasitology , Greenhouse Gases/analysis , Malaria/transmission , Mosquito Vectors/parasitology , Rain , Seasons , Water/parasitology , Plasmodium , Epidemiological Models
10.
Malar J ; 23(1): 156, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773487

ABSTRACT

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , Mosquito Control , Mosquito Vectors , Mosquito Control/methods , Mosquito Vectors/genetics , Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/genetics , Gene Drive Technology/methods
11.
Malar J ; 23(1): 168, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812003

ABSTRACT

BACKGROUND: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS: This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS: Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS: The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.


Subject(s)
Anopheles , Bacillus thuringiensis , Insecticide-Treated Bednets , Larva , Malaria , Mosquito Control , Cote d'Ivoire/epidemiology , Animals , Anopheles/drug effects , Anopheles/physiology , Larva/drug effects , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Insecticide-Treated Bednets/statistics & numerical data , Female , Mosquito Vectors/drug effects , Humans , Male , Adolescent , Child, Preschool , Young Adult , Child , Adult
12.
Sci Rep ; 14(1): 12100, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802488

ABSTRACT

Field-derived metrics are critical for effective control of malaria, particularly in sub-Saharan Africa where the disease kills over half a million people yearly. One key metric is entomological inoculation rate, a direct measure of transmission intensities, computed as a product of human biting rates and prevalence of Plasmodium sporozoites in mosquitoes. Unfortunately, current methods for identifying infectious mosquitoes are laborious, time-consuming, and may require expensive reagents that are not always readily available. Here, we demonstrate the first field-application of mid-infrared spectroscopy and machine learning (MIRS-ML) to swiftly and accurately detect Plasmodium falciparum sporozoites in wild-caught Anopheles funestus, a major Afro-tropical malaria vector, without requiring any laboratory reagents. We collected 7178 female An. funestus from rural Tanzanian households using CDC-light traps, then desiccated and scanned their heads and thoraces using an FT-IR spectrometer. The sporozoite infections were confirmed using enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), to establish references for training supervised algorithms. The XGBoost model was used to detect sporozoite-infectious specimen, accurately predicting ELISA and PCR outcomes with 92% and 93% accuracies respectively. These findings suggest that MIRS-ML can rapidly detect P. falciparum in field-collected mosquitoes, with potential for enhancing surveillance in malaria-endemic regions. The technique is both fast, scanning 60-100 mosquitoes per hour, and cost-efficient, requiring no biochemical reactions and therefore no reagents. Given its previously proven capability in monitoring key entomological indicators like mosquito age, human blood index, and identities of vector species, we conclude that MIRS-ML could constitute a low-cost multi-functional toolkit for monitoring malaria risk and evaluating interventions.


Subject(s)
Anopheles , Machine Learning , Malaria, Falciparum , Mosquito Vectors , Plasmodium falciparum , Animals , Anopheles/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Mosquito Vectors/parasitology , Female , Humans , Tanzania/epidemiology , Sporozoites , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods
13.
Commun Biol ; 7(1): 649, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802531

ABSTRACT

Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.


Subject(s)
Anopheles , Cryoelectron Microscopy , Insect Proteins , Animals , Insect Proteins/chemistry , Insect Proteins/metabolism , Anopheles/metabolism , Anopheles/immunology , Anopheles/parasitology , Complement C3b/metabolism , Complement C3b/chemistry , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Models, Molecular
14.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
15.
Parasit Vectors ; 17(1): 228, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755640

ABSTRACT

BACKGROUND: Ivermectin is a well-tolerated anthelminthic drug with wide clinical and veterinary applications. It also has lethal and sublethal effects on mosquitoes. Mass drug administration with ivermectin has therefore been suggested as an innovative vector control tool in efforts to curb emerging insecticide resistance and reduce residual malaria transition. To support assessments of the feasibility and efficacy of current and future formulations of ivermectin for vector control, we sought to establish the relationship between ivermectin concentration and its lethal and sublethal impacts in a primary malaria vector. METHODS: The in vitro effects of ivermectin on daily mortality and fecundity, measured by egg production, were assessed up to 14 days post-blood feed in a laboratory colony of Anopheles coluzzii. Mosquitoes were fed ivermectin in blood meals delivered by membrane feeding at one of six concentrations: 0 ng/ml (control), 10 ng/ml, 15 ng/ml, 25 ng/ml, 50 ng/ml, 75 ng/ml, and 100 ng/ml. RESULTS: Ivermectin had a significant effect on mosquito survival in a concentration-dependent manner. The LC50 at 7 days was 19.7 ng/ml. The time to median mortality at ≥ 50 ng/ml was ≤ 4 days, compared to 9.6 days for control, and 6.3-7.6 days for ivermectin concentrations between 10 and 25 ng/ml. Fecundity was also affected; no oviposition was observed in surviving females from the two highest concentration treatment groups. While females exposed to 10 to 50 ng/ml of ivermectin did oviposit, significantly fewer did so in the 50 ng/ml treatment group compared to the control, and they also produced significantly fewer eggs. CONCLUSIONS: Our results showed ivermectin reduced mosquito survival in a concentration-dependent manner and at ≥ 50 ng/ml significantly reduced fecundity in An. coluzzii. Results indicate that levels of ivermectin found in human blood following ingestion of a single 150-200 µg/kg dose would be sufficient to achieve 50% mortality across 7 days; however, fecundity in survivors is unlikely to be affected. At higher doses, a substantial impact on both survival and fecundity is likely. Treating human populations with ivermectin could be used as a supplementary malaria vector control method to kill mosquito populations and supress their reproduction; however strategies to safely maintain mosquitocidal blood levels of ivermectin against all Anopheles species require development.


Subject(s)
Anopheles , Fertility , Insecticides , Ivermectin , Mosquito Control , Mosquito Vectors , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Female , Mosquito Vectors/drug effects , Mosquito Control/methods , Insecticides/pharmacology , Fertility/drug effects , Malaria/transmission , Dose-Response Relationship, Drug , Feeding Behavior/drug effects
16.
Malar J ; 23(1): 148, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750468

ABSTRACT

BACKGROUND: Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools. METHODS: The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. RESULTS: A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall. CONCLUSION: Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.


Subject(s)
Anopheles , Insecticides , Mosquito Control , Anopheles/drug effects , Animals , Mosquito Control/methods , Insecticides/pharmacology , Female , Mosquito Vectors/drug effects , Housing , Insecticide Resistance , Malaria/prevention & control
17.
Parasit Vectors ; 17(1): 224, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750608

ABSTRACT

BACKGROUND: Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. Racemic ivermectin is composed of two components, namely a major component (> 80%; ivermectin B1a), which has an ethyl group at C-26, and a minor component (< 20%; ivermectin B1b), which has a methyl group at C-26. There is no difference between the efficacy of ivermectin B1a and ivermectin B1b efficacy in nematodes, but only ivermectin B1b has been reported to be lethal to snails. The ratios of ivermectin B1a and B1b ratios in ivermectin formulations and tablets can vary between manufacturers and batches. The mosquito-lethal effects of ivermectin B1a and ivermectin B1b have never been assessed. As novel ivermectin formulations are being developed for malaria control, it is important that the mosquito-lethal effects of individual ivermectin B1a and ivermectin B1b compounds be evaluated. METHODS: Racemic ivermectin, ivermectin B1a or ivermectin B1b, respectively, was mixed with human blood at various concentrations, blood-fed to Anopheles dirus sensu stricto and Anopheles minimus sensu stricto mosquitoes, and mortality was observed for 10 days. The ivermectin B1a and B1b ratios from commercially available racemic ivermectin and marketed tablets were assessed by liquid chromatography-mass spectrometry. RESULTS: The results revealed that neither the lethal concentrations that kills 50% (LC50) nor 90% (LC90) of mosquitoes differed between racemic ivermectin, ivermectin B1a or ivermectin B1b for An. dirus or An. minimus, confirming that the individual ivermectin components have equal mosquito-lethal effects. The relative ratios of ivermectin B1a and B1b derived from sourced racemic ivermectin powder were 98.84% and 1.16%, respectively, and the relative ratios for ivermectin B1a and B1b derived from human oral ivermectin tablets were 98.55% and 1.45%, respectively. CONCLUSIONS: The ratio of ivermectin B1a and B1b does not influence the Anopheles mosquito-lethal outcome, an ideal study result as the separation of ivermectin B1a and B1b components at scale is cost prohibitive. Thus, variations in the ratio of ivermectin B1a and B1b between batches and manufacturers, as well as potentially novel formulations for malaria control, should not influence ivermectin mosquito-lethal efficacy.


Subject(s)
Anopheles , Insecticides , Ivermectin , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Female , Mosquito Control/methods , Malaria/prevention & control , Malaria/transmission
18.
Malar J ; 23(1): 161, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783348

ABSTRACT

BACKGROUND: Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS: Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION: Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Animals , Anopheles/physiology , Mosquito Vectors/physiology , Malaria/prevention & control , Malaria/transmission , Africa South of the Sahara , Mosquito Control/methods , Female , Feeding Behavior , Male
19.
Parasit Vectors ; 17(1): 236, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783366

ABSTRACT

BACKGROUND: Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS: Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS: In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS: Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Oviposition , Plasmodium berghei , Animals , Anopheles/physiology , Anopheles/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Female , Malaria/transmission , Malaria/parasitology , Plasmodium berghei/physiology , Salivary Glands/parasitology , Sporozoites/physiology , Sugars/metabolism , Mice
20.
Malar J ; 23(1): 164, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789998

ABSTRACT

BACKGROUND: Nets containing pyriproxyfen, an insect growth regulator that sterilizes adult mosquitoes, have become available for malaria control. Suitable methods for investigating vector susceptibility to pyriproxyfen and evaluating its efficacy on nets need to be identified. The sterilizing effects of pyriproxyfen on adult malaria vectors can be assessed by measuring oviposition or by dissecting mosquito ovaries to determine damage by pyriproxyfen (ovary dissection). METHOD: Laboratory bioassays were performed to compare the oviposition and ovary dissection methods for monitoring susceptibility to pyriproxyfen in wild malaria vectors using WHO bottle bioassays and for evaluating its efficacy on nets in cone bioassays. Blood-fed mosquitoes of susceptible and pyrethroid-resistant strains of Anopheles gambiae sensu lato were exposed to pyriproxyfen-treated bottles (100 µg and 200 µg) and to unwashed and washed pieces of a pyriproxyfen long-lasting net in cone bioassays. Survivors were assessed for the sterilizing effects of pyriproxyfen using both methods. The methods were compared in terms of their reliability, sensitivity, specificity, resources (cost and time) required and perceived difficulties by trained laboratory technicians. RESULTS: The total number of An. gambiae s.l. mosquitoes assessed for the sterilizing effects of pyriproxyfen were 1745 for the oviposition method and 1698 for the ovary dissection method. Fertility rates of control unexposed mosquitoes were significantly higher with ovary dissection compared to oviposition in both bottle bioassays (99-100% vs. 34-59%, P < 0.05) and cone bioassays (99-100% vs. 18-33%, P < 0.001). Oviposition rates of control unexposed mosquitoes were lower with wild pyrethroid-resistant An. gambiae s.l. Cové, compared to the laboratory-maintained reference susceptible An gambiae sensu stricto Kisumu (18-34% vs. 58-76%, P < 0.05). Sterilization rates of the Kisumu strain in bottle bioassays with the pyriproxyfen diagnostic dose (100 µg) were suboptimal with the oviposition method (90%) but showed full susceptibility with ovary dissection (99%). Wild pyrethroid-resistant Cové mosquitoes were fully susceptible to pyriproxyfen in bottle bioassays using ovary dissection (> 99%), but not with the oviposition method (69%). Both methods showed similar levels of sensitivity (89-98% vs. 89-100%). Specificity was substantially higher with ovary dissection compared to the oviposition method in both bottle bioassays (99-100% vs. 34-48%) and cone tests (100% vs.18-76%). Ovary dissection was also more sensitive for detecting the residual activity of pyriproxyfen in a washed net compared to oviposition. The oviposition method though cheaper, was less reliable and more time-consuming. Laboratory technicians preferred ovary dissection mostly due to its reliability. CONCLUSION: The ovary dissection method was more accurate, more reliable and more efficient compared to the oviposition method for evaluating the sterilizing effects of pyriproxyfen on adult malaria vectors in susceptibility bioassays and for evaluating the efficacy of pyriproxyfen-treated nets.


Subject(s)
Anopheles , Insecticides , Ovary , Oviposition , Pyridines , Animals , Pyridines/pharmacology , Anopheles/drug effects , Anopheles/physiology , Female , Oviposition/drug effects , Ovary/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Biological Assay/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...