Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12682, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
2.
Protein Expr Purif ; 219: 106478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570105

ABSTRACT

Xylanases are the main enzymes to hydrolyze xylan, the major hemicellulose found in lignocellulose. Xylanases also have a wide range of industrial applications. Therefore, the discovery of new xylanases has the potential to enhance efficiency and sustainability in many industries. Here, we report a xylanase with thermophilic character and superior biochemical properties for industrial use. The new xylanase is discovered in Anoxybacillus ayderensis as an intracellular xylanase (AAyXYN329) and recombinantly produced. While AAyXYN329 shows significant activity over a wide pH and temperature range, optimum activity conditions were determined as pH 6.5 and 65 °C. The half-life of the enzyme was calculated as 72 h at 65 °C. The enzyme did not lose activity between pH 6.0-9.0 at +4 °C for 75 days. Km, kcat and kcat/Km values of AAyXYN329 were calculated as 4.09824 ± 0.2245 µg/µL, 96.75 1/sec, and 23.61/L/g.s -1, respectively. In conclusion, the xylanase of A. ayderensis has an excellent potential to be utilized in many industrial processes.


Subject(s)
Anoxybacillus , Bacterial Proteins , Endo-1,4-beta Xylanases , Enzyme Stability , Recombinant Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Anoxybacillus/enzymology , Anoxybacillus/genetics , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Temperature , Escherichia coli/genetics , Xylans/metabolism , Xylans/chemistry , Substrate Specificity , Kinetics
3.
Res Microbiol ; 174(4): 104027, 2023 May.
Article in English | MEDLINE | ID: mdl-36646262

ABSTRACT

A moderately thermophilic, gram-positive genomospecies Anoxybacillus rupiensis TPH1 was isolated from Tatapani hot spring, Chhattisgarh, India. Genome of 3.70 Mb with 42.3% GC subsumed 4131 CDSs, 65 tRNA, 5 rRNA, 35 AMR and 19 drug target genes. Further, comparative genomics of 19 Anoxybacillus spp. exhibited an open pan genome of 13102 genes along with core (10.62%), unique (43.5%) and accessory (45.9%) genes. Moreover, phylogenomic tree displayed clustering of Anoxybacillus spp. into two distinct clades where clade A species harbored larger genomes, more unique genes, CDS and hypothetical proteins than clade B species. Further, distribution of azoreductases showed FMN-binding NADPH azoreductase (AzoRed1) presence in clade A species only and FMN-binding NADH azoreductase (AzoRed2) harboring by species of both clades. Heavy metal resistance genes distribution showed omnipresence of znuA, copZ and arsC in both clades, dispersed presence of cbiM, czcD, merA and feoB over both clades and harboring of nikA and acr3 by few species of clade A only. Additionally, molecular docking of AzoRed1, AzoRed2, ZnuA, CopZ, Acr3, CbiM, CzcD, MerA and NikA with their respective ligands indicated high affinity and stable binding. Conclusively, present study provided insight into gene repertoire of genus Anoxybacillus and a basis for the potential application of this thermophile in bioremediation of azo dyes and heavy metals.


Subject(s)
Anoxybacillus , Hot Springs , Metals, Heavy , Anoxybacillus/genetics , Biodegradation, Environmental , Azo Compounds/metabolism , Molecular Docking Simulation , Metals, Heavy/metabolism , Phylogeny
4.
Arch Microbiol ; 204(7): 439, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768663

ABSTRACT

In the present study, we attempted to clarify the taxonomic positions of Anoxybacillus karvacharensis K1T, Anoxybacillus kestanbolensis NCIMB 13971T, Anoxybacillus flavithermus subsp. yunnanensis CCTCC AB2010187T, and Anoxybacillus tengchongensis DSM 23211T using whole-genome phylogenetic analysis. The genome sequence of A. kestanbolensis NCIMB13971T was not available in any database, so it was sequenced in this study. The 16S rRNA gene sequence obtained from the genome of A. kestanbolensis NCIMB13971T had 99.93% similarity with A. karvacharensis K1T. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (DDH) values between A. karvacharensis K1T and A. kestanbolensis NCIMB13971T and between A. flavithermus subsp. yunnanensis CCTCCAB 2010187T and A. tengchongensis DSM 23211T were greater than the threshold values for species demarcation. The present results indicate that A. karvacharensis K1T is a later heterotypic synonym of A. kestanbolensis NCIMB13971T; A. flavithermus subsp. yunnanensis CCTCCAB 2010187T is a later heterotypic synonym of A. tengchongensis DSM 23211T.


Subject(s)
Anoxybacillus , Anoxybacillus/genetics , Anoxybacillus/metabolism , Bacterial Typing Techniques , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids/analysis , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA
5.
Extremophiles ; 26(1): 11, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35122547

ABSTRACT

Transfer RNAs (tRNAs) are the most ancient RNA molecules in the cell, modification pattern of which is linked to phylogeny. The aim of this study was to determine the tRNA modification profiles of obligate (Anoxybacillus, Geobacillus, Paragebacillus) and moderate (Bacillus, Brevibacillus, Ureibacillus, Paenibacillus) thermophilic aerobic bacilli strains to find out its linkage to phylogenetic variations between species. LC-MS was applied for the quantification of modified nucleosides using both natural and isotopically labeled standards. The presence of m2A and m7G modifications at high levels was determined in all species. Relatively high level of i6A and m5C modification was observed for Paenibacillus and Ureibacillus, respectively. The lowest level of Cm modification was found in Bacillus. The modification ms2i6A and m1G were absent in Brevibacillus and Ureibacillus, respectively, while modifications Am and m22G were observed only for Ureibacillus. While both obligate and moderate thermophilic species contain Gm, m1G and ms2i6A modifications, large quantities of them (especially Gm and ms2i6A modification) were detected in obligate thermophilic ones (Geobacillus, Paragebacillus and Anoxybacillus). The collective set of modified tRNA bases is genus-specific and linked to the phylogeny of bacilli. In addition, the dataset could be applied to distinguish obligate thermophilic bacilli from moderate ones.


Subject(s)
Anoxybacillus , Bacillus , Geobacillus , Anoxybacillus/genetics , Bacillus/genetics , Phylogeny , RNA, Transfer/genetics
6.
PLoS One ; 17(1): e0263188, 2022.
Article in English | MEDLINE | ID: mdl-35085360

ABSTRACT

BACKGROUND: Schistosomiasis is a neglected tropical parasitic and chronic disease affecting hundreds of millions of people. Adult schistosomes reside in the blood stream of the definitive mammalian host. These helminth parasites possess two epithelial surfaces, the tegument and the gastrodermis, both of which interact with the host during immune evasion and in nutrient uptake. METHODS: Female ARC Swiss mice (4-6 weeks old) were infected percutaneously with Schistosoma japonicum cercariae freshly shed from Oncomelania hupensis quadrasi snails (Philippines strain). Fluorescent in situ hybridisation (FISH) was performed by using fresh adult S. japonicum perfused from those infected mice. Adult S. japonicum worms were processed to isolate the tegument from the carcass containing the gastrodermis; blood and bile were collected individually from infected and uninfected mice. Total DNA extracted from all those samples were used for microbiome profiling. RESULTS: FISH and microbiome profiling showed the presence of bacterial populations on two epithelial surfaces of adult worms, suggesting they were distinct not only from the host blood but also from each other. Whereas microbial diversity was reduced overall in the parasite epithelial tissues when compared with that of host blood, specific bacterial taxa, including Anoxybacillus and Escherichia, were elevated on the tegument. Minimal differences were evident in the microbiome of host blood during an active infection, compared with that of control uninfected blood. However, sampling of bile from infected animals identified some differences compared with controls, including elevated levels of Limnohabitans, Clostridium and Curvibacter. CONCLUSIONS: Using FISH and microbial profiling, we were able to demonstrate, for the first time, that bacteria are presented on the epithelial surfaces of adult schistosomes. These schistosome surface-associated bacteria, which are distinct from the host blood microenvironment, should be considered as a new and important component of the host-schistosome interaction. The importance of individual bacterial species in relation to schistosome parasitism needs further elucidation.


Subject(s)
Blood/microbiology , Epithelium/microbiology , Microbiota/genetics , Schistosoma japonicum/microbiology , Schistosomiasis japonica/blood , Animals , Anoxybacillus/genetics , Bile/microbiology , Cercaria , Clostridium/genetics , Comamonadaceae/genetics , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Disease Models, Animal , Escherichia coli/genetics , Female , In Situ Hybridization, Fluorescence/methods , Male , Mice , RNA, Ribosomal, 16S/genetics , Schistosoma japonicum/isolation & purification , Schistosomiasis japonica/parasitology , Snails/parasitology
7.
Int J Biol Macromol ; 193(Pt B): 1898-1909, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34793813

ABSTRACT

This study reports a novel BglA9 gene of 1345 bp encoding ß-glucosidase from Anoxybacillus ayderensis A9, which was amplified and expressed in E. coli BL21 (DE3): pLysS cells, purified with Ni-NTA column having molecular weight of 52.6 kDa and was used in the bioconversion of polydatin to resveratrol. The kinetic parameters values using pNPG as substrate were Km (0.28 mM), Vmax (43.8 µmol/min/mg), kcat (38.43 s-1) and kcat/Km (135.5 s-1 mM-1). The BglA9 was active in a broad pH range and had an activity half-life around 24 h at 50 °C. The de-glycosylation efficiency of BglA9 for polydatin was determined by estimating the amount of glucose released after enzymatic reaction by a dinitrosalicylic acid (DNS) assay. The kinetic parameters of BglA9 for polydatin were 5.5 mM, 20.84 µmol/min/mg, 18.28 s-1and 3.27 s-1 mM-1 for Km, Vmax, kcat, and kcat/Km values, respectively. The Ki value for glucose was determined to be 1.7 M. The residues Gln19, His120, Glu355, Glu409, Glu178, Asn222 may play a crucial role in the deglycosylation as revealed by the 3D structure of enzyme docked with polydatin.


Subject(s)
Anoxybacillus/genetics , Anoxybacillus/metabolism , Glucosides/metabolism , Stilbenes/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Cloning, Molecular/methods , Enzyme Stability/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/metabolism , Glycosylation , Hydrogen-Ion Concentration , Kinetics , Molecular Docking Simulation/methods , Substrate Specificity/genetics , Temperature
8.
Biomed Res Int ; 2021: 1869748, 2021.
Article in English | MEDLINE | ID: mdl-34258259

ABSTRACT

Anoxybacillus kamchatkensis NASTPD13 isolated from Paudwar hot spring of Myagdi, Nepal, upon morphological and biochemical analysis revealed to be Gram-positive, straight or slightly curved, rod-shaped, spore-forming, catalase, and oxidase-positive facultative anaerobes. It grows over a wide range of pH (5.0-11) and temperature (37-75°C), which showed growth in different reduced carbon sources such as starch raffinose, glucose, fructose, inositol, trehalose, sorbitol, mellobiose, and mannitol in aerobic conditions. Furthermore, the partial sequence obtained upon sequencing showed 99% sequence similarity in 16S rRNA gene sequence with A. kamchatkensis JW/VK-KG4 and was suggested to be Anoxybacillus kamchatkensis. Moreover, whole-genome analysis of NASTPD13 revealed 2,866,796 bp genome with a G+C content of 41.6%. Analysis of the genome revealed the presence of 102 RNA genes, which includes sequences coding for 19 rRNA and 79 tRNA genes. While the 16S rRNA gene sequence of strain NASTPD13 showed high similarity (>99%) to those of A. kamchatkensis JW/VK-KG4, RAST analysis of NASTPD13 genome suggested that A. kamchatkensis G10 is actually the closest neighbor in terms of sequence similarity. The genome annotation by RAST revealed various genes encoding glycoside hydrolases supporting that it can utilize several reduced carbon sources as observed and these genes could be important for carbohydrate-related industries. Xylanase pathway, particularly the genomic region encoding key enzymes for xylan depolymerization and xylose metabolism, further confirmed the presence of the complete gene in xylan metabolism. In addition, the complete xylose utilization gene locus analysis of NASTPD13 genome revealed all including D-xylose transport ATP-binding protein XylG and XylF, the xylose isomerase encoding gene XylA, and the gene XylB coding for a xylulokinase supported the fact that the isolate contains a complete set of genes related to xylan degradation, pentose transport, and metabolism. The results of the present study suggest that the isolated A. kamchatkensis NASTPD13 containing xylanase-producing genes could be useful in lignocellulosic biomass-utilizing industries where pentose polymers could also be utilized along with the hexose polymers.


Subject(s)
Anoxybacillus/genetics , Data Analysis , Hot Springs/microbiology , Whole Genome Sequencing , Amino Acid Sequence , Anoxybacillus/enzymology , Anoxybacillus/ultrastructure , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Circular/genetics , Genome, Bacterial , Glycoside Hydrolases/metabolism , Molecular Sequence Annotation , Nepal , Open Reading Frames/genetics , Phylogeny , Xylose/metabolism
9.
Ecotoxicol Environ Saf ; 214: 112084, 2021 May.
Article in English | MEDLINE | ID: mdl-33640726

ABSTRACT

Direct Black G (DBG) is a highly toxic synthetic azo dye which is difficult to degrade. Biological treatment seems to be a promising option for the treatment of azo dye containing effluent. A thermophilic bacterial strain (Anoxybacillus sp. PDR2) previously isolated from the soil can effectively remove DBG. However, the molecular underpinnings of DBG degradation and the microbial detoxification ability remains unknown. In the present study, the genetic background of PDR2 for the efficient degradation of DBG and its adaptation to azo dye-contaminated environments was revealed by bioinformatics. Moreover, the possible biodegradation pathways were speculated based on the UV-vis spectral analysis, FTIR, and intermediates identified by LC-MS. Additionally, phytotoxicity and the comet experiment studies clearly indicated that PDR2 converts toxic azo dye (DBG) into low toxicity metabolites. The combination of biodegradation pathways and detoxification analysis were utilized to explore the molecular degradation mechanism and bioremediation of azo dye for future applications. These findings will provide a valuable theoretical basis for the practical treatment of azo dye wastewater.


Subject(s)
Anoxybacillus/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , Anoxybacillus/genetics , Bacteria/metabolism , Color , Coloring Agents/metabolism , Humans , Soil , Wastewater
10.
Ecotoxicol Environ Saf ; 203: 111047, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32888598

ABSTRACT

Understanding azo dye degrading enzymes and the encoding of their functional genes is crucial for the elucidation of their molecular mechanisms. In this study, a thermophilic strain capable of degrading azo dye was isolated from the soil near a textile dye manufacturing factory. Based on its morphological, physiological and biochemical properties, as well as 16S rRNA gene sequence analysis, the strain was identified as Anoxybacillus sp. PDR2. The decolorization ratios of 100-600 mg/L Direct Black G (DBG) by strain PDR2 reached 82.12-98.39% within 48 h of dyes. Genome analysis revealed that strain PDR2 contains a circular chromosome of 3791144 bp with a G + C content of 42.48%. The genetic basis of azo dye degradation by strain PDR2 and its capacity to adapt to harsh environments, were further elucidated through bioinformatics analysis. RNA-Seq and qRT-PCR technology confirmed that NAD(P)H-flavin reductase, 2Fe-2S ferredoxin and NAD(P)-dependent ethanol dehydrogenase genes expressed by strain PDR2, were the key genes involved in DBG degradation. The combination of genome and transcriptome analysis was utilized to explore the key genes of strain PDR2 involved in azo dye biodegradation, with these findings providing a valuable theoretical basis for the practical treatment of azo dye wastewater.


Subject(s)
Anoxybacillus/isolation & purification , Azo Compounds/analysis , Coloring Agents/analysis , Genes, Bacterial , Soil Microbiology , Anoxybacillus/genetics , Anoxybacillus/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , China , Coloring Agents/metabolism , Gene Expression Profiling , Genomics , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Textile Industry
11.
Prep Biochem Biotechnol ; 50(6): 578-584, 2020.
Article in English | MEDLINE | ID: mdl-32011972

ABSTRACT

Lipase based formulations has been a rising interest to laundry detergent industry for their eco-friendly property over phosphate-based counterparts and compatibility with chemical detergents ingredients. A thermo-stable Anoxybacillus sp. ARS-1 isolated from Taptapani Hotspring, India was characterized for optimum lipase production employing statistical model central composite design (CCD) under four independent variables (temperature, pH, % moisture and bio-surfactant) by solid substrate fermentation (SSF) using mustard cake. The output was utilized to find the effect of parameters and their interaction employing response surface methodology (RSM). A quadratic regression with R2 = 0.955 established the model to be statically best fitting and a predicted highest lipase production of 29.4 IU/g at an optimum temperature of 57.5 °C, pH 8.31, moisture 50% and 1.2 mg of bio-surfactant. Experimental production of 30.3 IU/g lipase at above conditions validated the fitness of model. Anoxybacillus sp. ARS-1 produced lipase was found to resist almost all chemical detergents as well as common laundry detergent, proving it to be a prospective additive for incorporation.


Subject(s)
Anoxybacillus/enzymology , Bacterial Proteins/biosynthesis , Detergents/chemistry , Lipase/biosynthesis , Models, Statistical , Anoxybacillus/genetics , DNA, Bacterial/genetics , Detergents/pharmacology , Enzyme Stability/drug effects , Fermentation , Hydrogen-Ion Concentration , India , Mustard Plant/chemistry , Phylogeny , Plant Oils/chemistry , RNA, Ribosomal, 16S/genetics , Temperature
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118055, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-31955121

ABSTRACT

Cyclomaltodextrinase (CDase) is a member of the alpha-amylase family GH13, the subfamily GH13_20. In addition to CDase and neopullulanase, this subfamily also contains maltogenic amylase. They have common structural features, but different substrate specificity. In current work, a combination of bioinformatics and experimental tools were used for designing and constructions of single and double mutants of a new variant of CDase from Anoxybacillus flavithermus. Considering the evolutionary variable positions 123 and 127 at the dimer interface of subunits in the alpha-amylase family, these positions in CDase were modified and three mutants, including A123V, C127Q and A123V/C127Q were constructed. The tertiary structure of WT and mutants were made with the MODELLER program, and the phylogenetic tree of homologous protein sequences was built with selected programs in Phylip package. Enzyme kinetic studies revealed that the catalytic efficiency of mutants, especially double one, is lower than the WT enzyme. Heat-induced denaturation experiments were monitored by measuring the UV/Vis signal at 280 nm, and it was found that WT protein is structurally more stable at 25 °C. However, it is more susceptible to changes in temperature compared to the double mutant. It was concluded that the positions 123 and 127 at the dimeric interface of CDase, not only could affect the conformational stability; but also; the catalytic properties of the enzyme by setting up the active site configuration in the dimeric state.


Subject(s)
Anoxybacillus/genetics , Bacterial Proteins/genetics , Glycoside Hydrolases/genetics , Amino Acid Sequence , Anoxybacillus/chemistry , Anoxybacillus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Enzyme Stability , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Models, Molecular , Mutagenesis , Mutation , Phylogeny , Protein Conformation , Protein Multimerization , Sequence Alignment , Structural Homology, Protein
13.
Enzyme Microb Technol ; 131: 109385, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31615674

ABSTRACT

From ecological and industrial perspectives, Anoxybacillus flavithermus species that lives in a thermophilic environment, are extremely important bacteria due to their potential in producing highly interesting compounds and enzymes. In order to understand the genetic makeup of these thermophiles, we have performed a comparative genomics study of 12 genome-sequenced strains of Anoxybacillus flavithermus bacteria. The genome size of Anoxybacillus flavithermus strains is from 2.5Mbp to 3.7Mbp and on average containing a low percentage of G + C genomic content (˜41.9%). We show that, on the basis of the total gene-content, Anoxybacillus flavithermus strains are grouped in three different subgroups. In the future, it would be interesting to explore these strain subgroups to further understand the lifestyle of thermophilic bacteria. Focussing on the Anoxybacillus flavithermus AK1 strain, which was isolated from a Hot Spring in Saudi Arabia and closely related to A. flavithermus NBRC strain, we identified a unique list of 75 genes specific to AK1 strain, of which 63 of them have homologs in other taxonomically related species. We speculate that these AK1-specific genes might be resulted due to horizontal gene transfer from other bacteria in order to adapt to the extreme environmental conditions. Moreover, we predicted three potential secondary metabolite gene clusters in the AK1 strain that further need to be experimentally characterised. Genomic annotation, secondary metabolite gene clusters and outcomes of the strain genomic comparisons from this study would be the basis for the strain-specific mathematical model for exploiting the metabolism for the industrial and ecological applications.


Subject(s)
Anoxybacillus/genetics , Genome, Bacterial , Genomics , Anoxybacillus/isolation & purification , Base Composition , Genotype , Hot Springs , Saudi Arabia
14.
Extremophiles ; 23(6): 687-706, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31407121

ABSTRACT

A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.


Subject(s)
Anoxybacillus/enzymology , Bacterial Proteins/chemistry , Detergents/chemistry , Hot Temperature , Peptide Hydrolases/chemistry , Anoxybacillus/genetics , Bacterial Proteins/genetics , Enzyme Stability , Peptide Hydrolases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
15.
J Biosci Bioeng ; 127(1): 8-15, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30228040

ABSTRACT

Carbohydrate binding module (CBM) as a kind of non-catalytic domain has significant effects on the substrate binding and catalytic properties of glycoside hydrolases. CBM68 of an Anoxybacillus sp. pullulanase (PulA) was identified as a new type of CBM in our previous studies. Then, four key substrate binding amino acid residues (Y14, V91, G92, and R96) were obtained by alanine substitutions in this work. Through kinetic analysis of the mutants, V91A and G92A showed significant reduction both in Km values and kcat values against pullulan. To further identify the changes of substrate affinities of V91A and G92A, devitalized mutants V91A-D413N and G92A-D413N were under measuring by surface plasmon resonance (SPR). Compared with that of PulA-D413N, the substrate affinities of V91A-D413N and G92A-D413N were improved by 1.6-fold and 2.2-fold, respectively. However, as to the product (maltotriose) binding force tested by the isothermal titration calorimetry (ITC), G92A showed higher binding force than that of V91A and PulA by 4.2-fold and 6.2-fold, respectively. That may cause G92A showing significantly lower catalytic efficiency than V91A and PulA. Moreover, four different kinds of amino acids (leucine, serine, glutamic acid and arginine) substitutions for V91 and G92 showed various changes both on the kinetic parameters and enzymatic properties, which demonstrated that V91 and G92 were the critical binding residues in the CBM68. The results of this study made contributed to the rational design for improving the catalytic efficiency of PulA.


Subject(s)
Anoxybacillus/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Amino Acid Substitution , Anoxybacillus/genetics , Carbohydrate Metabolism , Catalysis , Glucans/metabolism , Glycoside Hydrolases/genetics , Kinetics , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , Trisaccharides/metabolism
16.
Int J Food Microbiol ; 286: 111-119, 2018 Dec 02.
Article in English | MEDLINE | ID: mdl-30059888

ABSTRACT

Off-flavor is one of the most common food complaints. In this study, we demonstrated that acetic acid produced by Anoxybacillus sp. contamination of takikomi-gohan (boiled rice with sweet potato mixed in advance) was considered the causative agent of acid off-flavor development. First, we conducted whole genome sequencing of the bacterial strain (S1674) isolated from the remains of the contaminated takikomi-gohan, and phylogenetic analysis of k-mer diversity demonstrated that S1674 belongs to the Anoxybacillus genus. Gene expression analysis of S1674 RNA sequencing (RNA-seq) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the genes encoding enzymes responsible for acetic acid formation, namely ackA1, eutD, pflA, pflB, and pykA, were upregulated in high-temperature cultures in Thermus medium supplemented with soluble starch. Additionally, we succeeded in reproducing the acid off-flavor by adding S1674 to boiled rice stored at 37 °C, 45 °C, and 60 °C. The most strongly detected organic acid was acetic acid, at the odor threshold value or more in both the air and condensation samples. Our findings suggest that some Anoxybacillus sp. produce acetic acid as a byproduct of carbohydrate metabolism, potentially causing the complaint of acid off-flavor even under high-temperature conditions in which other bacteria cannot survive.


Subject(s)
Acetic Acid/metabolism , Anoxybacillus/isolation & purification , Anoxybacillus/metabolism , Ipomoea batatas/microbiology , Oryza/microbiology , Anoxybacillus/genetics , Base Sequence , Carbohydrate Metabolism/physiology , Food Microbiology , Genome, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing
17.
Antonie Van Leeuwenhoek ; 111(12): 2275-2282, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29931494

ABSTRACT

A Gram-stain positive, moderately thermophilic, aerobic, spore-forming and rod-shaped bacterium, designated YIM 73012T, was isolated from a sediment sample collected from a hot spring located in Tibet, China, and was characterized by using a polyphasic taxonomy approach. The strain is oxidase positive and catalase negative. Growth occurred at 37-65 °C (optimum, 45-50 °C), at pH 6.0-8.5 (optimum, pH 7.0-7.5) and with 0.5-3.5% NaCl (optimum, 0.5-1.0%, w/v). The major fatty acids were iso-C15:0, iso-C16:0 and C16:0. The major polar lipids comprised of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and phosphatidylglycerol. The cell wall peptidoglycan contained meso-diaminopimelic acid. The respiratory quinone was MK-7. The G+C content of genomic DNA was 43.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain YIM 73012T forms a distinct lineage with respect to the genus Anoxybacillus in the family Bacillaceae. Based on 16S rRNA gene sequence identities the closely related phylogenetic neighbours are Anoxybacillus caldiproteolyticus DSM 15730T (96.7%) and Saccharococcus thermophilus DSM 4749T (96.6%). Strain YIM 73012T was distinguishable from the closely related reference strains by the differences in phenotypic, chemotaxonomic and genotypic characteristics, and represents a novel species of the genus Anoxybacillus, for which the name Anoxybacillus sp. nov. is proposed. The type species is Anoxybacillus sediminis sp. nov., with the type strain YIM 73012T (= KCTC 33884T = DSM 103835T).


Subject(s)
Anoxybacillus/isolation & purification , Geologic Sediments/microbiology , Hot Springs/microbiology , Anoxybacillus/classification , Anoxybacillus/genetics , Anoxybacillus/metabolism , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Geologic Sediments/chemistry , Hot Springs/chemistry , Hot Temperature , Phylogeny , RNA, Ribosomal, 16S/genetics , Tibet
18.
World J Microbiol Biotechnol ; 34(7): 95, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29904894

ABSTRACT

Among the thermophilic Bacillaceae family members, α-amylase production of 15 bacilli from genus Anoxybacillus was investigated, some of which are biotechnologically important. These Anoxybacillus α-amylase genes displayed ≥ 91.0% sequence similarities to Anoxybacillus enzymes (ASKA, ADTA and GSX-BL), but relatively lower similarities to Geobacillus (≤ 69.4% to GTA, Gt-amyII), and Bacillus aquimaris (≤ 61.3% to BaqA) amylases, all formerly proposed only in a Glycoside Hydrolase 13 (GH13) subfamily. The phylogenetic analyses of 63 bacilli-originated protein sequences among 93 α-amylases revealed the overall relationships within Bacillaceae amylolytic enzymes. All bacilli α-amylases formed 5 clades different from 15 predefined GH13 subfamilies. Their phylogenetic findings, taxonomic relationships, temperature requirements, and comparisonal structural analyses (including their CSR-I-VII regions, 12 sugar- and 4 calcium-binding sites, presence or absence of the complete catalytic machinery, and their currently unassigned status in a valid GH13 subfamiliy) revealed that these five GH13 α-amylase clades related to familly share some common characteristics, but also display differentiative features from each other and the preclassified ones. Based on these findings, we proposed to divide Bacillaceae related GH13 subfamilies into 5 individual groups: the novel a2 subfamily clustered around α-amylase B2M1-A (Anoxybacillus sp.), the a1, a3 and a4 subfamilies (including the representatives E184aa-A (Anoxybacillus sp.), ATA (Anoxybacillus tepidamans), and BaqA,) all of which were composed from the division of the previously grouped single subfamily around α-amylase BaqA, and the undefinite subfamily formerly defined as xy including Bacillus megaterium NL3.


Subject(s)
Anoxybacillus/enzymology , Bacillaceae/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/classification , Glycoside Hydrolases/metabolism , alpha-Amylases/chemistry , alpha-Amylases/classification , alpha-Amylases/metabolism , Amino Acid Sequence , Anoxybacillus/classification , Anoxybacillus/genetics , Bacillaceae/genetics , Bacillus/classification , Bacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Enzyme Assays , Enzyme Stability , Evolution, Molecular , Geobacillus/metabolism , Glycoside Hydrolases/genetics , Models, Molecular , Phylogeny , Protein Conformation , Protein Domains , Sequence Alignment , alpha-Amylases/genetics
19.
J Microbiol Biotechnol ; 28(4): 606-612, 2018 Apr 28.
Article in English | MEDLINE | ID: mdl-29429321

ABSTRACT

The enzyme xylose isomerase (E.C. 5.3.1.5, XI) is responsible for the conversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studied the characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, the gene coding for XI (xylA) was inserted into the pET-21a(+) expression vector and the construct was transformed into the Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-ß-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was 80°C and measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at 60°C. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase the enzyme activity; manganese was the most effective. Additionally, recombinant XI was resistant to the presence of Ca²âº and Zn²âº ions. The kinetic properties, Km and Vmax, were calculated as 81.44 mM and 2.237 µmol/min/mg, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus, and Thermotoga. These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Anoxybacillus/enzymology , Anoxybacillus/genetics , Calcium/adverse effects , Gene Expression Regulation, Bacterial , Zinc/adverse effects , Aldose-Ketose Isomerases/isolation & purification , Bacillus/enzymology , Base Sequence , Cloning, Molecular , DNA, Bacterial/genetics , Enzyme Activation , Enzyme Assays , Enzyme Stability , Escherichia coli/genetics , Geobacillus/enzymology , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/enzymology , Hydrogen-Ion Concentration , Kinetics , Metals/adverse effects , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Temperature
20.
Int J Food Microbiol ; 262: 89-98, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-28968534

ABSTRACT

Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm2, respectively. Number of cells recovered from biofilms on 1cm2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript will broaden our knowledge on biofilm formation of a large number of dairy isolates and emphasize strain and substrate dependence.


Subject(s)
Anoxybacillus/isolation & purification , Bacillus licheniformis/isolation & purification , Biofilms/growth & development , Geobacillus stearothermophilus/isolation & purification , Milk/microbiology , Spores, Bacterial/growth & development , Animals , Anoxybacillus/genetics , Bacillus licheniformis/genetics , Bacterial Load , China , Geobacillus stearothermophilus/genetics , Random Amplified Polymorphic DNA Technique , Stainless Steel
SELECTION OF CITATIONS
SEARCH DETAIL
...