Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.157
Filter
1.
Food Res Int ; 188: 114504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823880

ABSTRACT

(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.


Subject(s)
Pancreatic alpha-Amylases , Polyphenols , Salivary alpha-Amylases , Humans , Structure-Activity Relationship , Polyphenols/pharmacology , Polyphenols/chemistry , Salivary alpha-Amylases/metabolism , Salivary alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/metabolism , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anthocyanins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Saliva/enzymology , Saliva/chemistry
2.
J Oleo Sci ; 73(5): 657-664, 2024.
Article in English | MEDLINE | ID: mdl-38692889

ABSTRACT

This present work investigated the influence of black rice anthocyanins as antioxidants on the oxidation stability of oil. Malonic acid, succinic acid and succinic anhydride were grafted on black rice anthocyanins through acylation method to improve their antioxidant activity in oil. The results from fourier transform infrared spectroscopy (FTIR) showed new absorption peaks near 1744 cm -1 and 1514 cm -1 , which implied that malonic acid, succinic acid and succinic anhydride grafted on the -OH of glucoside and rutinoside through esterification reaction and resulted that the polarity of these were reduced. Total content of anthocyanin (TAC) decreased to 166. 3 mg/g, 163.7 mg/g and 150.2 mg/g, respectively after modification with succinic acid, malonic acid and succinic anhydride. Compared with native anthocyanins, the acylation of black rice anthocyanins partially reduced its antioxidant activity. In addition, DPPH clearance of molecular modified anthocyanins decreased to 62.6% (San-An). As revealed in the oil stability through the determination of primary oxidation products (PV) and secondary oxidation products (p-AV), Sa-An, Ma-An and San-An showed stronger antioxidant activity in Schaal oven accelerated oxidation test during 12 days than native black rice anthocyanin in both corn oil and flaxseed oil. Molecular modified black rice anthocyanins are expected to be used as colorants, antioxidants, etc. in oil-rich food.


Subject(s)
Anthocyanins , Antioxidants , Oryza , Oxidation-Reduction , Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/pharmacology , Oryza/chemistry , Acylation , Plant Oils/chemistry , Plant Oils/pharmacology , Spectroscopy, Fourier Transform Infrared
3.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792175

ABSTRACT

Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.


Subject(s)
Food Packaging , Ipomoea batatas , Oils, Volatile , Permeability , Ipomoea batatas/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Food Packaging/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Steam , Tensile Strength , Anthocyanins/chemistry , Anthocyanins/pharmacology , Color
4.
Toxicol Appl Pharmacol ; 487: 116953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705400

ABSTRACT

INTRODUCTION: Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS: Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3ß, and ß-catenin levels, antioxidant activities, and histopathological changes. RESULTS: BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3ß (GSK3ß) and restored Wnt3 and ß-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION: Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/ß-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.


Subject(s)
Alzheimer Disease , Anthocyanins , Benzhydryl Compounds , Cognition , Neuroprotective Agents , Phenols , Rats, Sprague-Dawley , Spatial Memory , Wnt Signaling Pathway , Animals , Phenols/pharmacology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/pharmacology , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Spatial Memory/drug effects , Male , Rats , Wnt Signaling Pathway/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cognition/drug effects , Disease Models, Animal , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
5.
Int J Biol Macromol ; 270(Pt 1): 132305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740148

ABSTRACT

Although the active and intelligent properties of rich in anthocyanin extracts added to films have been extensively studied, there remains a sparsity of research pertaining to the miscibility of blended films. This work focused on the miscibility of the chitosan/polyvinyl alcohol (CP) film caused by the addition of Aronia melanocarpa extracts (AME), which are rich anthocyanins and phenolic acids, and its effect on physicochemical and functional properties. AME facilitated the amidation reaction and ionic interaction of chitosan in CP films, leading to loss of the crystallinity degree of chitosan. Furthermore, the crystal disruption promoted the formation of hydrogen bonds with polyvinyl alcohol (PVA) with the promoted miscibility. CP film incorporated with 8 % AME possessed the highest tensile strength (26.79 MPa), and elongation at break (66.38 %) as well as excellent ultraviolet-visible (UV-vis) light barrier property, water vapor barrier properties, due to its high miscibility degree. Moreover, this film also showed excellent antioxidant, antibacterial activity, and pH response function, which could be used to monitor the storage of highly perishable shrimp. Hence, the AME provided extra functionality and improved miscibility between chitosan and PVA, which showed great potential for the preparation of high-performance bioactive-fortified and intelligent food packaging films.


Subject(s)
Antioxidants , Chitosan , Food Packaging , Photinia , Plant Extracts , Polyvinyl Alcohol , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Food Packaging/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Photinia/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tensile Strength , Hydrogen-Ion Concentration , Anthocyanins/chemistry , Anthocyanins/pharmacology
6.
Int J Biol Macromol ; 269(Pt 1): 132112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714278

ABSTRACT

The objective of this study was to investigate the impact of anthocyanin-rich black currant extract (BCE) on the structural properties of starch and the inhibition of glycosidases, gathering data and research evidence to support the use of low glycemic index (GI) foods. The BCE induced a change in the starch crystal structure from A-type to V-type, resulting in a drop in digestibility from 81.41 % to 65.57 %. Furthermore, the inhibitory effects of BCE on glycosidases activity (α-glucosidase: IC50 = 0.13 ± 0.05 mg/mL and α-amylase: IC50 = 2.67 ± 0.16 mg/mL) by inducing a change in spatial conformation were confirmed through in vitro analysis. The presence of a 5'-OH group facilitated the interaction between anthocyanins and receptors of amylose, α-amylase, and α-glucosidase. The glycosyl moiety enhanced the affinity for amylose yet lowered the inhibitory effect on α-amylase. The in vivo analysis demonstrated that BCE resulted in a reduction of 3.96 mM·h in blood glucose levels (Area Under Curve). The significant hypoglycemic activity, particularly the decrease in postprandial blood glucose levels, highlights the potential of utilizing BCE in functional foods for preventing diabetes.


Subject(s)
Anthocyanins , Glycoside Hydrolases , Hypoglycemic Agents , Plant Extracts , Ribes , Starch , Ribes/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Anthocyanins/chemistry , Anthocyanins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Starch/chemistry , Starch/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Blood Glucose , Animals , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Male
7.
Food Funct ; 15(11): 5825-5841, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38751340

ABSTRACT

The study determines the sustained and acute effects of a red-fleshed apple (RFA), rich in anthocyanins (ACNs), a white-fleshed apple (WFA) without ACNs, and an infusion from Aronia melanocarpa (AI) with an equivalent content of ACNs as RFA, on different cardiometabolic risk biomarkers in hypercholesterolemic subjects. A randomized, parallel study was performed for 6 weeks and two dose-response studies were performed at the baseline and after intervention. At 6 weeks, RFA consumption improved ischemic reactive hyperemia and decreased C-reactive protein and interleukine-6 compared to WFA consumption. Moreover, at 6 weeks, AI decreased P-selectin compared to WFA and improved the lipid profile. Three products reduced C1q, C4 and Factor B, and RFA and AI reduced C3. Although both RFA and AI have a similar ACN content, RFA, by a matrix effect, induced more improvements in inflammation, whereas AI improved the lipid profile. Anti-inflammatory protein modulation by proteomic reduction of the complement system and immunoglobulins were verified after WFA, AI and RFA consumption.


Subject(s)
Anthocyanins , Hypercholesterolemia , Inflammation , Malus , Humans , Anthocyanins/pharmacology , Anthocyanins/administration & dosage , Hypercholesterolemia/drug therapy , Malus/chemistry , Male , Female , Middle Aged , Adult , Fruit/chemistry , Photinia/chemistry , C-Reactive Protein , Immune System/drug effects , Aged , Plant Extracts/pharmacology
8.
Food Res Int ; 184: 114222, 2024 May.
Article in English | MEDLINE | ID: mdl-38609214

ABSTRACT

Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.


Subject(s)
Anthocyanins , Nanoparticles , Anthocyanins/pharmacology , Polyphenols/pharmacology , Antioxidants/pharmacology
9.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673738

ABSTRACT

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Subject(s)
Atherosclerosis , Fruit , Human Umbilical Vein Endothelial Cells , Photinia , Plant Extracts , Photinia/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Atherosclerosis/drug therapy , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Anthocyanins/pharmacology , Anthocyanins/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Interleukin-6/metabolism , Interleukin-6/genetics
10.
Nutrients ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674870

ABSTRACT

BACKGROUND: Circadian and homeostatic declines in cognitive performance are observed during the day, most commonly at 14:00. Additionally, postprandial reductions in cognitive ability have been widely demonstrated 1 h after lunch consumption, affecting domains of executive functioning (EF), episodic memory (EM), and attention. Existing evidence shows that anthocyanin-rich foods such as berries may improve or attenuate the decline in EF and EM in ageing adults. Further research is required to assess whether extracts such as wild blueberry extract (WBE) may be beneficial for cognitive function across an acute timeframe, including known periods of reduced functioning. OBJECTIVES: (1) Study 1: ROAB: To investigate the efficacy of WBE in maintaining EF and EM throughout the day alongside measures of cardiovascular outcomes in healthy older adults. A range of WBE doses were utilised to identify the optimal dose at which cognitive and cardiovascular effects occur. (2) Study 2: BEAT: To replicate alleviation of cognitive decline during a predicted post-lunch dip whilst also improving cardiovascular outcomes following acute WBE 222 mg supplementation. METHODS: Both studies employed a randomised, double-blind, cross-over, placebo-controlled design to explore the effects of WBE intervention versus placebo on several outcomes, including EM, EF, blood pressure, and heart rate in a healthy older adult population (aged 68-75). In ROAB, 28 participants received a single dose of WBE 111 mg, 222 mg, 444 mg, or 888 mg or placebo over a 5-week period, each separated by a 1-week washout. Outcomes were measured at 0 h, 2 h, 4 h, and 6 h post intervention, with intervention occurring immediately after baseline (0 h). In BEAT, 45 participants received WBE 222 mg and placebo (1-week washout). Outcomes were measured at 0 h and 6 h (14:00) when a post-lunch dip was anticipated. This was further enhanced by consumption of lunch 1 h prior to cognitive testing. The WBE 222 mg intervention aligned with known peaks in plasma blueberry polyphenol metabolites at 2 h post dosing, which would coincide with a predicted drop in post-lunch performance. RESULTS: ROAB: A significant dip in executive function was apparent at the 4 h timepoint for placebo only, indicating attenuation for WBE doses. Strikingly, WBE 222 mg produced acute reductions in both systolic and diastolic blood pressure compared with placebo. BEAT: EF reaction time was found to be significantly faster for WBE 222 compared to placebo at the predicted post-lunch dip (14:00), with no other notable benefits on a range of cognitive and cardiovascular outcomes. CONCLUSION: These two studies indicate that WBE may have cardiovascular benefits and attenuate the natural cognitive decline observed over the course of the day, particularly when a decline is associated with a circadian rhythm-driven postprandial dip. However, it is important to acknowledge that effects were subtle, and benefits were only observed on a small number of outcomes. Further research is required to explore the utility of WBE in populations already experiencing mild cognitive impairments.


Subject(s)
Blood Pressure , Blueberry Plants , Cognition , Cross-Over Studies , Executive Function , Heart Rate , Plant Extracts , Humans , Blueberry Plants/chemistry , Aged , Female , Male , Cognition/drug effects , Plant Extracts/pharmacology , Double-Blind Method , Heart Rate/drug effects , Blood Pressure/drug effects , Executive Function/drug effects , Memory, Episodic , Anthocyanins/pharmacology , Postprandial Period , Dietary Supplements , Fruit/chemistry
11.
Cell Signal ; 119: 111177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621470

ABSTRACT

In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.


Subject(s)
Anthocyanins , Arsenic , Blueberry Plants , Hippocampus , Memory Disorders , Mitochondria , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Blueberry Plants/chemistry , Oxidative Stress/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Arsenic/toxicity , Neurons/drug effects , Neurons/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Anthocyanins/pharmacology , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/drug therapy , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Male , DNA-Binding Proteins/metabolism , Apoptosis/drug effects , Transcription Factors/metabolism , Rats, Sprague-Dawley , Plant Extracts/pharmacology
12.
Int J Biol Macromol ; 267(Pt 2): 131325, 2024 May.
Article in English | MEDLINE | ID: mdl-38604425

ABSTRACT

Black rice anthocyanins (BRA) nanoparticles (NPs) were prepared using hyaluronic acid (HA), oxidized hyaluronic acid (OHA) and bovine serum albumin (BSA) to enhance the absorption and bioactivity of anthocyanins (ACNs). Results showed that HA/OHA-BSA-BRA NPs had a spherical morphology and excellent dispensability, with hydrated radius ~ 500 nm, zeta potential ~ - 30 mV, and encapsulation efficiency ~21 %. Moreover, using in vitro gastrointestinal release assay, we demonstrated that both BRA-loaded NPs exhibited effective controlled release properties of ACNs, significantly enhancing the accessibility of ACNs to the intestine. Cellular experiments showed that both two NPs had good biocompatibility and increased uptake of BRA. Furthermore, in comparison to the free BRA group, both BRA NPs groups significantly decreased the TEER value and increased the expression of tight junction proteins (Claudin 1, Occludin and ZO-1) in Caco-2 cell monolayers with LPS-induced damage. Therefore, our study demonstrated that HA/OHA-BSA-BRA NPs are promising carriers of ACNs and can effectively prevent the LPS-induced intestinal barrier injury in vitro.


Subject(s)
Anthocyanins , Hyaluronic Acid , Nanoparticles , Oryza , Serum Albumin, Bovine , Humans , Anthocyanins/pharmacology , Anthocyanins/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Nanoparticles/chemistry , Caco-2 Cells , Serum Albumin, Bovine/chemistry , Oryza/chemistry , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cattle , Drug Carriers/chemistry , Intestinal Barrier Function
13.
Int J Biol Macromol ; 267(Pt 2): 131563, 2024 May.
Article in English | MEDLINE | ID: mdl-38626837

ABSTRACT

Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer. The results showed that the preparation of porous PLLA fiber membrane loaded with 0.2 % Cur was achieved by adjusting the spinning-related parameters, which could ensure that the composite dressing had sufficient anti-inflammatory, antibacterial and antioxidant properties. The HPAN membrane treated with alkali for 30 min had significantly enhanced liquid wetting ability, and the unidirectional transport of liquid could be achieved by simple combination with the 20 um PCPLLA fiber membrane. In addition, the 4 % loaded PCA showed more obvious color difference than the colorimetric membrane. In vivo and ex vivo experiments have demonstrated the potential of multifunctional dressings for the treatment of chronic wounds.


Subject(s)
Bandages , Curcumin , Polyesters , Wound Healing , Hydrogen-Ion Concentration , Polyesters/chemistry , Porosity , Animals , Wound Healing/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Acrylic Resins/chemistry , Anthocyanins/chemistry , Anthocyanins/pharmacology , Hydrophobic and Hydrophilic Interactions , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Male , Antioxidants/pharmacology , Antioxidants/chemistry , Brassica/chemistry
14.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38567751

ABSTRACT

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Subject(s)
Anthocyanins , Chitosan , Chitosan/analogs & derivatives , Hepatocytes , Nanoparticles , Palmitic Acid , Chitosan/chemistry , Anthocyanins/chemistry , Anthocyanins/administration & dosage , Anthocyanins/pharmacology , Palmitic Acid/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Nanoparticles/chemistry , Drug Carriers/chemistry , Oxidative Stress/drug effects , Animals , Hep G2 Cells
15.
Fitoterapia ; 175: 105953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588905

ABSTRACT

Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.


Subject(s)
Anthocyanins , Anthocyanins/pharmacology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Inflammation , Animals , Tight Junction Proteins/metabolism
16.
Nutrients ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674794

ABSTRACT

Metabolic syndrome (MetS) is a significant health problem. The co-occurrence of obesity, carbohydrate metabolism disorders, hypertension and atherogenic dyslipidaemia is estimated to affect 20-30% of adults worldwide. Researchers are seeking solutions to prevent and treat the conditions related to MetS. Preventive medicine, which focuses on modifiable cardiovascular risk factors, including diet, plays a special role. A diet rich in fruits and vegetables has documented health benefits, mainly due to the polyphenolic compounds it contains. Anthocyanins represent a major group of polyphenols; they exhibit anti-atherosclerotic, antihypertensive, antithrombotic, anti-inflammatory and anticancer activities, as well as beneficial effects on endothelial function and oxidative stress. This review presents recent reports on the mechanisms involved in the protective effects of anthocyanins on the body, especially among people with MetS. It includes epidemiological data, in vivo and in vitro preclinical studies and clinical observational studies. Anthocyanins are effective, widely available compounds that can be used in both the prevention and treatment of MetS and its complications. Increased consumption of anthocyanin-rich foods may contribute to the maintenance of normal body weight and modulation of the lipid profile in adults. However, further investigation is needed to confirm the beneficial effects of anthocyanins on serum glucose levels, improvement in insulin sensitivity and reduction in systolic and diastolic blood pressure.


Subject(s)
Anthocyanins , Metabolic Syndrome , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Humans , Fruit/chemistry , Oxidative Stress/drug effects , Animals
17.
Molecules ; 29(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675711

ABSTRACT

Although much less common than anthocyanins, 3-Deoxyanthocyanidins (3-DAs) and their glucosides can be found in cereals such as red sorghum. It is speculated that their bioavailability is higher than that of anthocyanins. Thus far, little is known regarding the therapeutic effects of 3-DAs and their O-ß-D-glucosides on cancer, including prostate cancer. Thus, we evaluated their potential to decrease cell viability, to modulate the activity of transcription factors such as NFκB, CREB, and SOX, and to regulate the expression of the gene CDH1, encoding E-Cadherin. We found that 4',7-dihydroxyflavylium chloride (P7) and the natural apigeninidin can reduce cell viability, whereas 4',7-dihydroxyflavylium chloride (P7) and 4'-hydroxy-7-O-ß-D-glucopyranosyloxyflavylium chloride (P3) increase the activities of NFkB, CREB, and SOX transcription factors, leading to the upregulation of CDH1 promoter activity in PC-3 prostate cancer cells. Thus, these compounds may contribute to the inhibition of the epithelial-to-mesenchymal transition in cancer cells and prevent the metastatic activity of more aggressive forms of androgen-resistant prostate cancer.


Subject(s)
Anthocyanins , Cadherins , Glucosides , Promoter Regions, Genetic , Prostatic Neoplasms , Sorghum , Humans , Male , Anthocyanins/pharmacology , Anthocyanins/chemistry , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/drug effects , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucosides/pharmacology , Glucosides/chemistry , NF-kappa B/metabolism , PC-3 Cells , Promoter Regions, Genetic/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Sorghum/chemistry
18.
Chemosphere ; 358: 142153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688352

ABSTRACT

Zearalenone (ZEN) is widely found in foodstuffs and has serious harmful effects on female fertility, especially in pigs. Cyanidin-3-O-glucoside (C3G), a type of anthocyanin, exists in most dark fruits and vegetables; it has many positive dietary effects including as an antioxidant, anti-inflammatory, or anti-apoptotic agent. However, the beneficial effects of C3G alongside ZEN-induced damage in porcine oocytes and the underlying molecular mechanism have not been investigated. In this work, porcine cumulus-oocyte complexes (COCs) were divided into Control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G, and treated for 44-46 h in vitro. The results showed that C3G could alleviate ZEN-induced disorders of first polar body (PBI) extrusion, abnormalities of spindle assembly, cortical granule distribution, and mitochondrial distribution; these results were produced via restoring transzonal projections (TZPs), and inhibiting nicotinamide adenine dinucleotide phosphate oxidase (NOX4)-dependent oxidative stress and 'glucose regulatory protein 78/protein kinase-like endoplasmic reticulum kinase/α subunit of eukaryotic initiation factor 2α/activating transcription factor 4/C/EBP-homologous protein' (GRP78/PERK/eIF2α/ATF4/CHOP)-mediated endoplasmic reticulum stress (ERS) during oocyte maturation. Moreover, the over-expression of NOX4 in cumulus cells could result in a significant increase in ROS levels and ER fluorescence intensity in oocytes. In conclusion, C3G promoted in vitro maturation of porcine oocytes exposed to ZEN via mitigating NOX4-dependent oxidative stress and ERS in cumulus cells. These results contribute to our comprehension of the molecular mechanisms underlying the protective effects of C3G against ZEN toxicity in porcine oocytes, and they provide a novel theoretical foundation and strategy for future applications of C3G in the improvement of female reproduction.


Subject(s)
Anthocyanins , Cumulus Cells , Endoplasmic Reticulum Stress , Glucosides , NADPH Oxidase 4 , Oocytes , Oxidative Stress , Zearalenone , Animals , Cumulus Cells/drug effects , Swine , Endoplasmic Reticulum Stress/drug effects , Oocytes/drug effects , Oxidative Stress/drug effects , NADPH Oxidase 4/metabolism , Zearalenone/toxicity , Female , Anthocyanins/pharmacology , Glucosides/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism
19.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611771

ABSTRACT

To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 µM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics.


Subject(s)
Anthocyanins , Solanum tuberosum , Animals , Anthocyanins/pharmacology , Monophenol Monooxygenase , Melanins , Molecular Docking Simulation , Rhamnose , Zebrafish
20.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561079

ABSTRACT

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Subject(s)
Cataract , Dietary Supplements , NF-E2-Related Factor 2 , Ultraviolet Rays , Vitis , X-Linked Inhibitor of Apoptosis Protein , Animals , Cataract/prevention & control , Cataract/metabolism , Cataract/etiology , NF-E2-Related Factor 2/metabolism , Ultraviolet Rays/adverse effects , Vitis/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Mice , Lens, Crystalline/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/drug effects , Male , Resveratrol/pharmacology , Glutathione/metabolism , Signal Transduction/drug effects , Mice, Inbred C57BL , Anthocyanins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...