Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 849
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 366, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850320

ABSTRACT

This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Endopeptidases , Bacillus anthracis/drug effects , Bacillus anthracis/virology , Anthrax/drug therapy , Anthrax/microbiology , Animals , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/genetics , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacillus cereus/drug effects , Bacillus cereus/virology , Humans , Bacillus Phages/genetics
2.
Discov Med ; 36(184): 1030-1040, 2024 May.
Article in English | MEDLINE | ID: mdl-38798262

ABSTRACT

BACKGROUND: Since 2019, the incidence of anthrax in the Ningxia Hui Autonomous Region has increased significantly compared with previous years, so in this situation the anthrax in the Ningxia region not only had a detrimental impact on public health, but also inflicted significant economic repercussions. Therefore, we conducted a molecular epidemiological study of 20 strains from 2019-2023 isolates. This study investigated the origin of Bacillus anthracis and its genetic diversity. METHODS: We conducted canonical single-nucleotide polymorphisms (CanSNPs) typing and whole genome sequencing based on the extracted nucleic acid of Bacillus anthracis. Based on the whole genome drafts, we studied the genomic characteristics of 20 isolates. Meanwhile, we performed phylogenetic studies based on genome-wide core single-nucleotide polymorphisms (SNPs) using MEGA's Maximum Likelihood (ML) method and core-genome-based multilocus sequence typing (cgMLST) of the core genomes of these strains using BioNumerics' minimum spanning tree (MST) model. RESULTS: The 20 isolates were categorized into sub-lineages A.Br.001/002, and comparative genomic analyses of these strains with other isolates from other parts of the world showed that the strains from Ningxia were correlated with isolates from Europe, Indonesia, Georgia (USA), and Beijing (China). For the 20 isolates in Ningxia, the genetic relationship of the isolates isolated from the same year or region was relatively close. CONCLUSION: The A.Br.001/002 subgroup was the dominant endemic strain in Ningxia. The genetic relationship and phylogenesis between isolates from Ningxia and strains from Europe and Indonesia suggest that anthrax spread around the globe through ancient trade routes.


Subject(s)
Anthrax , Bacillus anthracis , Genome, Bacterial , Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Whole Genome Sequencing/methods , China/epidemiology , Anthrax/microbiology , Anthrax/epidemiology , Genome, Bacterial/genetics , Humans , Multilocus Sequence Typing/methods
3.
Genes (Basel) ; 15(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674361

ABSTRACT

Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.


Subject(s)
Anthrax , Antigens, Bacterial , Mutation , Polymorphism, Single Nucleotide , Receptors, Peptide , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Humans , Anthrax/microbiology , Anthrax/genetics , Anthrax/immunology , Receptors, Peptide/genetics , Bacterial Toxins/genetics , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Hyaline Fibromatosis Syndrome/genetics , Hyaline Fibromatosis Syndrome/microbiology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/microbiology , Disease Resistance/genetics , Receptors, Cell Surface/genetics , Protein Binding
4.
Microbiol Spectr ; 12(6): e0418023, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666793

ABSTRACT

The high-consequence pathogen Bacillus anthracis causes human anthrax and often results in lethal infections without the rapid administration of effective antimicrobial treatment. Antimicrobial resistance profiling is therefore critical to inform post-exposure prophylaxis and treatment decisions, especially during emergencies such as outbreaks or where intentional release is suspected. Whole-genome sequencing using a rapid long-read sequencer can uncover antimicrobial resistance patterns if genetic markers of resistance are known. To identify genomic markers associated with antimicrobial resistance, we isolated B. anthracis derived from the avirulent Sterne strain with elevated minimal inhibitory concentrations to clarithromycin. Mutants were characterized both phenotypically through broth microdilution susceptibility testing and observations during culturing, as well as genotypically with whole-genome sequencing. We identified two different in-frame insertions in the L22 ribosomal protein-encoding gene rplV, which were subsequently confirmed to be involved in clarithromycin resistance through the reversion of the mutant gene to the parent (drug-susceptible) sequence. Detection of the rplV insertions was possible with rapid long-read sequencing, with a time-to-answer within 3 h. The mutations associated with clarithromycin resistance described here will be used in conjunction with known genetic markers of resistance for other antimicrobials to strengthen the prediction of antimicrobial resistance in B. anthracis.IMPORTANCEThe disease anthrax, caused by the pathogen Bacillus anthracis, is extremely deadly if not treated quickly and appropriately. Clarithromycin is an antibiotic recommended for the treatment and post-exposure prophylaxis of anthrax by the Centers for Disease Control and Prevention; however, little is known about the ability of B. anthracis to develop resistance to clarithromycin or the mechanism of that resistance. The characterization of clarithromycin-resistant isolates presented here provides valuable information for researchers and clinicians in the event of a release of the resistant strain. Additionally, knowledge of the genetic basis of resistance provides a foundation for susceptibility prediction through rapid genome sequencing to inform timely treatment decisions.


Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Clarithromycin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/drug effects , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anthrax/microbiology , Humans , Mutation , Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Genome, Bacterial/genetics
5.
NPJ Syst Biol Appl ; 10(1): 33, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553532

ABSTRACT

Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Humans , Bayes Theorem , Anthrax/microbiology , Anthrax/prevention & control
6.
Antimicrob Agents Chemother ; 68(3): e0149723, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38358266

ABSTRACT

Bacillus anthracis is a Gram-positive Centers for Disease Control and Prevention category "A" biothreat pathogen. Without early treatment, inhalation of anthrax spores with progression to inhalational anthrax disease is associated with high fatality rates. Gepotidacin is a novel first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action and is being evaluated for use against biothreat and conventional pathogens. Gepotidacin selectively inhibits bacterial DNA replication via a unique binding mode and has in vitro activity against a collection of B. anthracis isolates including antibacterial-resistant strains, with the MIC90 ranging from 0.5 to 1 µg/mL. In vivo activity of gepotidacin was also evaluated in the New Zealand White rabbit model of inhalational anthrax. The primary endpoint was survival, with survival duration and bacterial clearance as secondary endpoints. The trigger for treatment was the presence of anthrax protective antigen in serum. New Zealand White rabbits were dosed intravenously for 5 days with saline or gepotidacin at 114 mg/kg/d to simulate a dosing regimen of 1,000 mg intravenous (i.v.) three times a day (TID) in humans. Gepotidacin provided a survival benefit compared to saline control, with 91% survival (P-value: 0.0001). All control animals succumbed to anthrax and were found to be blood- and organ culture-positive for B. anthracis. The novel mode of action, in vitro microbiology, preclinical safety, and animal model efficacy data, which were generated in line with Food and Drug Administration Animal Rule, support gepotidacin as a potential treatment for anthrax in an emergency biothreat situation.


Subject(s)
Acenaphthenes , Anthrax Vaccines , Anthrax , Bacillus anthracis , Heterocyclic Compounds, 3-Ring , Respiratory Tract Infections , Rabbits , Humans , Animals , Anthrax/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Anthrax Vaccines/therapeutic use
7.
Toxins (Basel) ; 16(2)2024 01 26.
Article in English | MEDLINE | ID: mdl-38393144

ABSTRACT

Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.


Subject(s)
Anthrax , Bacillus anthracis , Bacterial Toxins , Humans , Bacillus anthracis/metabolism , Anthrax/microbiology , Charcoal , Bacterial Toxins/metabolism , Virulence , Antigens, Bacterial/genetics
8.
Medicine (Baltimore) ; 103(3): e36921, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241573

ABSTRACT

RATIONALE: Anthrax is a severe zoonotic infectious disease caused by Bacillus anthracis. Most reported cases were traditionally diagnosed through culture and microscopy. We reported here the second case of cutaneous anthrax diagnosed by metagenomic next-generation sequencing (mNGS). PATIENT CONCERNS: A 63-year-old man had a history of contact with an unwell sheep, developing local redness and swelling on wrist. The dorsal side of the left hand and forearm, with tension blisters on the back of the left. DIAGNOSIS: B anthracis was detected from culturing and mNGS of tension blisters. INTERVENTIONS: On the second day of admission, the patient was administered 3.2 million units of penicillin every 6 hours, and isolated and closely observed. OUTCOMES: The patient improves and is discharged. LESSONS: Traditional bacterial cultures are time-consuming, while mNGS offers the advantage of accurate, quick, high-throughput, unbiased sequencing of all genetic material in a sample, which is a good technical tool for assisting in the diagnosis of rare pathogen infections.


Subject(s)
Anthrax , Bacillus anthracis , Skin Diseases, Bacterial , Male , Humans , Animals , Sheep , Middle Aged , Anthrax/diagnosis , Anthrax/microbiology , Blister , Skin Diseases, Bacterial/diagnosis , Bacillus anthracis/genetics , High-Throughput Nucleotide Sequencing
9.
Protein Cell ; 15(2): 135-148, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37855658

ABSTRACT

Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.


Subject(s)
Anthrax , Bacillus anthracis , Humans , Animals , Mice , Tumor Necrosis Factor-alpha , Anthrax/microbiology , Anthrax/pathology , Cytokines , Signal Transduction
10.
Travel Med Infect Dis ; 56: 102659, 2023.
Article in English | MEDLINE | ID: mdl-37926374

ABSTRACT

BACKGROUND: Anthrax is a zoonotic infection resulting from the bacteria Bacillus anthracis. Humans contract cutaneous anthrax by coming into contact, and gastrointestinal (GI) anthrax by consumption of infected animals or animal products. An outbreak investigation was conducted to confirm the occurrence of the anthrax outbreak, comprehend its extent, understand the epidemiological characteristics, identify the outbreak's cause, and propose control measures. METHODS: A descriptive epidemiology was carried out for this outbreak investigation. We defined a suspected human cutaneous anthrax case as appearance of skin lesions and symptoms (itching/redness/swelling) and a suspected case of GI anthrax as appearance of diarrhoea/abdominal pain/vomiting in a resident of Koraput district after being associated with slaughtering and/or consumption of carcass during 5th April to 15th May 2023. The etiological hypothesis was formulated using descriptive epidemiological methods. Laboratory confirmation was performed by real-time polymerase chain reaction (RT-PCR). Statistical analyses were conducted using SPSS 25. RESULTS: A total of 47 clinically suspected anthrax cases were identified during the outbreak in five villages of Koraput district in Odisha. The epidemic curve indicated multiple point-source exposures starting from 13th April 2023. About 10 cases were identified by RT-PCR testing as confirmed cases of anthrax. No death was recorded in this outbreak investigation. CONCLUSIONS: Based on a thorough examination of epidemiological survey results and laboratory findings, we conclude that the outbreak was of human cutaneous and GI anthrax. Exposures from handling dead animals were associated with cutaneous anthrax, whereas eating uncooked meat of dead sheep was associated with gastrointestinal anthrax.


Subject(s)
Anthrax , Humans , Animals , Sheep , Anthrax/epidemiology , Anthrax/diagnosis , Anthrax/microbiology , Vomiting , Disease Outbreaks , Diarrhea/epidemiology , India/epidemiology
11.
Infect Genet Evol ; 114: 105496, 2023 10.
Article in English | MEDLINE | ID: mdl-37678701

ABSTRACT

Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Humans , Anthrax/epidemiology , Anthrax/veterinary , Anthrax/microbiology , Phylogeny , Vietnam/epidemiology , Nuclear Family , Polymorphism, Single Nucleotide , Genotype , Disease Outbreaks
12.
Molecules ; 28(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764333

ABSTRACT

Bacillus anthracis has gained international attention as a deadly bacterium and a potentially deadly biological warfare agent. Dipicolinic acid (DPA) is the main component of the protective layer of anthracis spores, and is also an anthrax biomarker. Therefore, it is of great significance to explore an efficient and sensitive DPA detection method. Herein, a novel ratio hybrid probe (CQDs-PIL-Eu3+) was prepared by a simple one-step hydrothermal method using carbon quantum dots (CQDs) as an internal reference fluorescence and a covalent bond between CQDs and Eu3+ by using a polyionic liquid (PIL) as a bridge molecule. The ratiometric fluorescence probe was found to have the characteristics of sensitive fluorescence visual sensing in detecting DPA. The structure and the sensing properties of CQDs-PIL-Eu3+ were investigated in detail. In particular, the fluorescence intensity ratio of Eu3+ to CQDs (I616/I440) was linear with the concentration of DPA in the range of 0-50 µM, so the detection limit of the probe was as low as 32 nm, which was far lower than the DPA dose released by the number of anthrax spores in human body (60 µM) and, thus, can achieve sensitive detection. Therefore, the ratiometric fluorescence probe in this work has the characteristics of strong anti-interference, visual sensing, and high sensitivity, which provides a very promising scheme for the realization of anthrax biomarker DPA detection.


Subject(s)
Anthrax , Quantum Dots , Humans , Anthrax/diagnosis , Anthrax/microbiology , Europium/chemistry , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Fluorescence , Carbon/chemistry , Biomarkers/chemistry
13.
BMC Infect Dis ; 23(1): 167, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932357

ABSTRACT

BACKGROUND: Anthrax is a zoonotic disease caused by the Bacillus anthracis bacteria, which is one of the top five important livestock diseases and the second top priority zoonotic disease, next to rabies, in Ethiopia, which remains a major problem for animals and public health in Ethiopia. This study was conducted to verify the existence of the outbreak, determine risk factors, and implement measures to control the anthrax outbreak in Farta woreda, South Gondar zone, Northwest Ethiopia in 2019. METHODS: A community-based case-control study was conducted from March 25 to April 1, 2019. A structured questionnaire was used to collect data and for review of documents and discussion with livestock and health office staff. The collected data were analyzed by SPSS and presented in tables and graphs. RESULTS: A total of 20 human anthrax cases with an attack rate of 2.5 per 1000 population were reported from the affected kebele. The age of the cases ranged from 1 month to 65 years (median age = 37.5 years). Of the total cases, 66.7% were male and 77.8% were 15 and older. The probability of developing anthrax among people who had unvaccinated animals was higher than in those who didn't have unvaccinated animals with an AOR = 8.113 (95% CI 1.685-39.056) and the probability of getting anthrax in relation to people's awareness of anthrax was AOR = 0.114 (95% CI 0.025-0.524). CONCLUSION: An anthrax outbreak occurred in Wawa Mengera Kebele of Farta woreda. The presence of unvaccinated animals in a household was found to be a risk factor for anthrax cases. Timely animal vaccination and strengthening health education on the vaccination of animals, mode of transmission, and disposal of dead animals are essential for preventing anthrax cases.


Subject(s)
Anthrax , Bacillus , Animals , Humans , Male , Adult , Infant , Female , Anthrax/epidemiology , Anthrax/veterinary , Anthrax/microbiology , Ethiopia/epidemiology , Case-Control Studies , Zoonoses/epidemiology , Disease Outbreaks , Livestock
14.
PLoS One ; 18(3): e0283164, 2023.
Article in English | MEDLINE | ID: mdl-36930692

ABSTRACT

To meet the requirements of the Animal Rule, the efficacy of monotherapy with ANTHRASIL® (Anthrax Immune Globulin Intravenous (Human)) for inhalational anthrax was evaluated in blinded studies using rabbit and nonhuman primate models. Animals in both studies were randomized to treatment groups exposed to ~ 200 LD50 Bacillus anthracis (Ames strain) spores by the aerosol route to induce inhalational anthrax. Rabbits (N = 50/group) were treated with either 15 U/kg ANTHRASIL or a volume-matching dose of IGIV after disease onset as determined by the detection of bacterial toxin in the blood. At the end of the study, survival rates were 2% (1 of 48) in the IGIV control group, and 26% (13 of 50) in the ANTHRASIL-treated group (p = 0.0009). Similarly, ANTHRASIL was effective in cynomolgus monkeys (N = 16/group) when administered therapeutically after the onset of toxemia, with 6% survival in the IGIV control and a dose-related increase in survival of 36%, 43%, and 70% with 7.5, 15 or 30 U/kg doses of ANTHRASIL, respectively. These studies formed the basis for approval of ANTHRASIL by FDA under the Animal Rule.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Humans , Rabbits , Anthrax/microbiology , Immunoglobulin G/pharmacology , Primates , Disease Models, Animal , Antigens, Bacterial
15.
Res Microbiol ; 174(5): 104052, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921704

ABSTRACT

Bacillus anthracis is the zoonotic causal agent of anthrax. Its infectious form is the spore, which can persist in soil. Herbivores usually acquire the disease from grazing in spore-contaminated sites. There are two schools of thought regarding B. anthracis activities in soil. One contends the bacteria are obligate animal parasites and soil-based spores remain inert until taken up by another animal host. Others contend that spores can germinate in soil and the bacteria replicate and re-sporulate to maintain and/or increase spore numbers. This review discusses whether soil replication of B. anthracis is an important part of its life cycle.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Soil Microbiology , Soil , Spores, Bacterial , Anthrax/microbiology
16.
Anal Chim Acta ; 1247: 340891, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781250

ABSTRACT

Bacillus anthracis (B. anthracis) is a gram-positive bacterium responsible for the acute disease anthrax. Rapid and reliable identification of pathogenic B. anthracis is important in the detection of natural infectious disease cases or bio-threats. Herein, a DNA endonuclease targeted CRISPR trans reporter (DETECTR) detection platform based on recombinase polymerase amplification (RPA) was studied. The DETECTR system targeted three sequences from B. anthracis (the BA_5345 chromosomal specific marker, the protective antigen gene pag A from pXO1 plasmid and the capsule-biosynthesis-related gene cap A from pXO2 plasmid). We developed a rapid (<40 min), easy-to-implement and accurate identification method for of B. anthracis nucleic acid with near two-copies sensitivity. The combination of tripartite primer sets is effective for the reliable identification of B. anthracis but also for fast screening of pathogenic strains. More importantly, DETECTR correctly detected simulated clinical blood samples and firstly detected positive samples collected from the location of world War-II site, preserved at north-east China (45°36'55.940″ N, 126°38'33.738″ E) with high sensitivity and specificity. Our study provides insight into the DETECTR-based detection of B. anthracis. We present a novel screening and diagnostic option for pathogenic B. anthracis that can be performed on a user-friendly portable device. Based on its proven reliability, sensitivity, specificity and simplicity, our proposed method can be readily adapted to detect pathogenic B. anthracis, anthrax and biothreats.


Subject(s)
Anthrax , Bacillus anthracis , Humans , Anthrax/diagnosis , Anthrax/microbiology , DNA, Bacterial/genetics , Reproducibility of Results , Plasmids , Bacillus anthracis/genetics
17.
Res Microbiol ; 174(6): 104026, 2023.
Article in English | MEDLINE | ID: mdl-36646261

ABSTRACT

Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.


Subject(s)
Anthrax , Bacillus anthracis , Bacillus , Bacterial Toxins , Gastrointestinal Diseases , Humans , Animals , Mice , Guinea Pigs , Anthrax/microbiology , Anthrax/pathology , Antigens, Bacterial/genetics , Bacillus anthracis/genetics , Plasmids , Gastrointestinal Diseases/veterinary , Soil
18.
Res Microbiol ; 174(6): 104029, 2023.
Article in English | MEDLINE | ID: mdl-36720294

ABSTRACT

Anthrax is a lethal bacterial zoonosis primarily affecting herbivorous wildlife and livestock. Upon host death Bacillus anthracis vegetative cells form spores capable of surviving for years in soil. Anthrax transmission requires host exposure to large spore doses. Thus, conditions that facilitate higher spore concentrations or promote spore survival will increase the probability that a pathogen reservoir infects future hosts. We investigated abiotic and pathogen genomic variation in relation to spore concentrations in surface soils (0-1 cm depth) at 40 plains zebra (Equus quagga) anthrax carcass sites in Namibia. Specifically, how initial spore concentrations and spore survival were affected by seasonality associated with the timing of host mortality, local soil characteristics, and pathogen genomic variation. Zebras dying of anthrax in wet seasons-the peak season for anthrax in Etosha National Park-had soil spore concentrations 1.36 orders of magnitude higher than those that died in dry seasons. No other variables considered affected spore concentrations, and spore survival rates did not differ among sites. Surface soils at these pathogen reservoirs remained culture positive for a range of 3.8-10.4 years after host death. Future research could evaluate if seasonal patterns in spore concentrations are driven by differences in sporulation success or levels of terminal bacteremia.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Bacillus anthracis/genetics , Anthrax/veterinary , Anthrax/microbiology , Longevity , Soil Microbiology , Spores, Bacterial , Equidae/microbiology , Soil
19.
Food Chem ; 398: 133884, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35964575

ABSTRACT

Development of selective and sensitive methods for the detection of 2, 6-dipicolinic acid (DPA), a biomarker produced by bacterial spores, is of great significance for maintaining public health and food safety. Herein, a ratiometric fluorescence strategy using graphene carbon nitride (g-C3N4) coupled with Eu3+ is designed for the assay of DPA. As the concentration of DPA increases, the emission intensity of g-C3N4 kept constant which acted as a stable internal reference, while the fluorescence of Eu3+ was enhanced obviously due to the antenna effect. The linear calibration ranged from 0.1 to 15 µM with a detection limit of 13 nM was obtained. More Importantly, a paper-based sensor with a smartphone was successfully combined to perform colorimetric and visual detection of DPA in situ. This method has good performance for the detection of DPA, which is expected to broaden the application prospects of preliminary biomarker monitoring.


Subject(s)
Anthrax , Anthrax/diagnosis , Anthrax/microbiology , Biomarkers , Europium , Fluorescent Dyes , Humans , Nitriles , Picolinic Acids , Smartphone
20.
PLoS One ; 17(10): e0275261, 2022.
Article in English | MEDLINE | ID: mdl-36240150

ABSTRACT

Bacillus anthracis is a gram-positive, rod-shaped and endospore-forming bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. The spores are extremely hardy and may remain viable for many years in soil. Previous studies have identified East Qinghai and neighbouring Gansu in northwest China as a potential source of anthrax infection. This study was carried out to identify conditions and areas in the Qinghai Lake basin that are environmentally suitable for B. anthracis distribution. Anthrax occurrence data from 2005-2016 and environmental variables were spatially modeled by a maximum entropy algorithm to evaluate the contribution of the variables to the distribution of B. anthracis. Principal Component Analysis and Variance Inflation Analysis were adopted to limit the number of environmental variables and minimize multicollinearity. Model performance was evaluated using AUC (area under the curve) ROC (receiver operating characteristics) curves. The three variables that contributed most to the suitability model for B. anthracis are a relatively high annual mean temperature of -2 to 0°C, (53%), soil type classified as; cambisols and kastanozems (35%), and a high human population density of 40 individuals per km2 (12%). The resulting distribution map identifies the permanently inhabited rim of the Qinghai Lake as highly suitable for B. anthracis. Our environmental suitability map and the identified variables provide the nature reserve managers and animal health authorities readily available information to devise both surveillance strategy and control strategy (administration of vaccine to livestock) in B. anthracis suitable regions to abate future epidemics.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Anthrax/epidemiology , Anthrax/microbiology , Anthrax/veterinary , China , Disease Outbreaks , Humans , Lakes , Livestock , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...