Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.418
Filter
1.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692791

ABSTRACT

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Subject(s)
Anti-Bacterial Agents , Carbon , Copper , Neurotransmitter Agents , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Neurotransmitter Agents/urine , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Porosity , Copper/chemistry , Humans , Nanospheres/chemistry , Colorimetry/methods , Ferric Compounds/chemistry , Biomimetic Materials/chemistry , Animals , Biosensing Techniques/methods , Chloramphenicol/analysis , Chloramphenicol/urine , Limit of Detection
2.
J Mass Spectrom ; 59(6): e5041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751321

ABSTRACT

Numerous studies have suggested that intra-articular administration of antibiotics following primary revision surgery may be one of the methods for treating prosthetic joint infection (PJI). Vancomycin and meropenem are the two most commonly used antibiotics for local application. Determining the concentrations of vancomycin and meropenem in the serum and synovial fluid of patients with PJI plays a significant role in further optimizing local medication schemes and effectively eradicating biofilm infections. This study aimed to establish a rapid, sensitive, and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining the concentrations of vancomycin and meropenem in human serum and synovial fluid. Serum samples were processed using acetonitrile precipitation of proteins and dichloromethane extraction, while synovial fluid samples were diluted before analysis. Chromatographic separation was achieved in 6 min on a Waters Acquity UPLC BEH C18 column, with the mobile phase consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Quantification was carried out using a Waters XEVO TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in positive ion mode. The multiple reaction monitoring (MRM) mode was employed to detect the following quantifier ion transitions: 717.95-99.97 (norvancomycin), 725.90-100.04 (vancomycin), 384.16-67.99 (meropenem). The method validation conformed to the guidelines of the FDA and the Chinese Pharmacopoeia. The method demonstrated good linearity within the range of 0.5-50 µg/ml for serum and 0.5-100 µg/ml for synovial fluid. Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, matrix effect, and stability validation results all met the required standards. This method has been successfully applied in the pharmacokinetic/pharmacodynamic (PK/PD) studies of patients with PJI.


Subject(s)
Anti-Bacterial Agents , Meropenem , Prosthesis-Related Infections , Synovial Fluid , Tandem Mass Spectrometry , Vancomycin , Humans , Tandem Mass Spectrometry/methods , Vancomycin/blood , Vancomycin/analysis , Vancomycin/pharmacokinetics , Synovial Fluid/chemistry , Meropenem/analysis , Meropenem/blood , Meropenem/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/blood , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Reproducibility of Results , Male , Limit of Detection , Middle Aged , Liquid Chromatography-Mass Spectrometry
3.
J Chromatogr A ; 1725: 464943, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38691924

ABSTRACT

In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic ß-lactam antibiotics and ß-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.


Subject(s)
Cefoperazone , Cefuroxime , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Nanotubes , Silicon Dioxide , Solid Phase Extraction , Sulbactam , Cefoperazone/blood , Cefoperazone/chemistry , Humans , Sulbactam/blood , Sulbactam/chemistry , Solid Phase Extraction/methods , Silicon Dioxide/chemistry , Nanotubes/chemistry , Cefuroxime/blood , Cefuroxime/chemistry , Clay/chemistry , Adsorption , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Polyethyleneimine/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
4.
Dalton Trans ; 53(21): 8958-8968, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747069

ABSTRACT

Antibiotics are commonly used as antibacterial medications due to their extensive and potent therapeutic properties. However, the overconsumption of these chemicals leads to their accumulation in the human body via the food chain, amplifying drug resistance and compromising immunity, thus presenting a significant hazard to human health. Antibiotics are classified as organic pollutants. Therefore, it is crucial to conduct research on precise methodologies for detecting antibiotics in many substances, including food, pharmaceutical waste, and biological samples like serum and urine. The methodology described in this research paper introduces an innovative technique for producing nanoparticles using silica as the shell material, iron oxide as the core material, and carbon as the shell dopant. By integrating a carbon-doped silica shell, this substance acquires exceptional fluorescence characteristics and a substantial quantum yield value of 80%. By capitalising on this characteristic of the substance, we have effectively constructed a fluorescent sensor that enables accurate ofloxacin analysis, with a detection limit of 1.3 × 10-6 M and a linear range of concentrations from 0 to 120 × 10-6 M. We also evaluated the potential of CSIONPs for OLF detection in blood serum and tap water analysis. The obtained relative standard deviation values were below 3.5%. The percentage of ofloxacin recovery from blood serum ranged from 95.52% to 103.28%, and from 89.9% to 96.0% from tap water.


Subject(s)
Ofloxacin , Ofloxacin/blood , Ofloxacin/analysis , Ofloxacin/urine , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Limit of Detection , Water/chemistry
5.
Article in English | MEDLINE | ID: mdl-38714089

ABSTRACT

The lack of individual pure standard has hampered the application of therapeutic drug monitoring (TDM) for multi-component antibiotics in clinical laboratories. Here, we aimed to develop an integrated identification-quantification (ID-Quant) workflow based on ultra-high-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF-MS) to enable the comprehensive determination of all teicoplanin components without needing pure standards. The workflow comprises three steps. First, non-targeted MSE full scanning was used to detect and identify all potential ingredients. Then, characteristic product ions were selected to generate a quantitative time-of-flight multiple reaction monitoring (Tof-MRM) method. Finally, the constituent composition of teicoplanin injection was determined and utilized as an alternative reference standard to monitor the teicoplanin ingredients in human serum samples. As a result, nine teicoplanin analogs were identified from teicoplanin injection (Sanofi-Aventis, France). The overall performance of the Tof-MRM method was satisfactory in terms of linearity, precision, accuracy, and limits of detection. Utilizing the drug as standard, the individual concentrations for each component in patient serum were determined to be 0.120 µg/mL (A3-1), 0.020 µg/mL (N-1), 0.550 µg/mL (N-2), 0.730 µg/mL (A2-1), 4.26 µg/mL (A2-2,3), 4.79 µg/mL (A2-4,5), and 0.290 µg/mL (N-3), respectively. The distribution pattern of teicoplanin components was also discovered to differ from that in the drug injection. Overall, this integrated ID-Quant workflow based on UHPLC-QTOF-MS enables the robust quantitation of all teicoplanin analogs without the need for individual pure standard. This approach could help address the standard unavailability problem in the TDM of multi-component antibiotics.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Limit of Detection , Mass Spectrometry , Teicoplanin , Teicoplanin/chemistry , Teicoplanin/blood , Teicoplanin/analysis , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Drug Monitoring/methods , Humans , Reproducibility of Results , Linear Models , Mass Spectrometry/methods , Workflow
6.
ACS Appl Mater Interfaces ; 16(22): 28162-28171, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767334

ABSTRACT

This study investigated the suitability of surface modification for a long-range surface plasmon (LRSP) aptasensor using two different hydrogels, aiming at real-time monitoring of vancomycin (VCM) in undiluted serum and blood. Three different layer structures were formed on a gold surface of LRSP sensor chip using poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-N-methacryloyl-(L)-tyrosinemethylester (MAT)] (PMM) and poly[MPC-co-2-ethylhexyl methacrylate (EHMA)-co-MAT] (PMEM). The peptide aptamer for VCM was immobilized in PMM and PMEM via MAT. Among four differently prepared sensor chips, the LRSP hydrogel aptasensor with PMM, referred to as the PMM hydrogel, exhibited the highest sensor output and superior antifouling properties. Following the optimization of the PMM hydrogel preparation conditions, the shelf life of the PMM hydrogel was determined to exceed 2 weeks, and the same sensor chip could be used for 102 days without significant performance deterioration. The PMM hydrogel was then applied for VCM measurement in undiluted serum in vitro, where it demonstrated a limit of detection of 0.098 µM and a dynamic range of 0.18-100 µM, covering the therapeutic range. Additionally, the PMM hydrogel enabled the continuous measurement of various VCM concentrations in serum without rinsing and showed a concentration-dependent output in undiluted blood. These findings underscore the potential of the PMM hydrogel for real-time and direct monitoring of VCM in body fluids.


Subject(s)
Hydrogels , Surface Plasmon Resonance , Vancomycin , Vancomycin/blood , Vancomycin/chemistry , Vancomycin/pharmacology , Humans , Hydrogels/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Aptamers, Peptide/chemistry , Gold/chemistry , Aptamers, Nucleotide/chemistry , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives , Methacrylates/chemistry
7.
J Pharm Biomed Anal ; 244: 116119, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38579409

ABSTRACT

The use of TDM in clinical practice to monitor the plasma levels of antibiotics administered to critically ill patients is a well-established approach that allows for optimization of the patient's response to drug therapy, considering the characteristics of the drug, the clinical and physiological status of the patient and any peculiar of the pathogen that caused the clinical picture. In our laboratory, we have developed a single LC-MS/MS analysis for dosing the serum concentration of an antibacterial panel composed of eight antibacterial and two selective inhibitors. The method presented used a certified material furnished by a commercial company and was internally validated using the EMA guidelines. The results have shown high sensitivity, precision, and accuracy, a lower matrix effect combined with simple sample preparation and a time-saving procedure. We have evaluated the recovery rate and matrix effect by testing serum samples without pathological index and serum pools obtained from haemolysed, icteric, or lipemic samples. The assay has shown a recovery range between 94% and 101%.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Humans , Anti-Bacterial Agents/blood , Drug Monitoring/methods , Chromatography, Liquid/methods , Reproducibility of Results , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124301, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38636425

ABSTRACT

Due to the excellent characteristics, fluorescent copper nanoclusters (Cu NCs) have aroused great interest in recent years. Herein, the simple prepared, environmentally friendly fluorescent Cu NCs were synthesized by using trypsin as the stabilizer and applied for the determination of tetracycline. Uniformly dispersed Try-Cu NCs were obtained with average size of 3.5 ± 0.3 nm and some excellent merits of good water solubility, UV light stability and salt stability. Emission peaks around 460.0 nm were visibly quenched by tetracycline based on static quenching mechanism and inner filter effect (IFE). Two excellent linear relationships were observed between ln(F0/F) and tetracycline concentrations in the range of 1-100 µM and 100-300 µM with limit of detection (LOD) of 0.084 µM. Meanwhile, this nanoprobe exhibited an apparent selectivity for tetracycline detection. Moreover, Try-Cu NCs were successfully employed to determine tetracycline in serum and milk samples after facile pretreatment with satisfactory recovery rates and credible standard deviation. The results suggested that this as-prepared Try-Cu NCs had excellent application prospects in the future.


Subject(s)
Copper , Fluorescent Dyes , Limit of Detection , Metal Nanoparticles , Milk , Spectrometry, Fluorescence , Tetracycline , Copper/chemistry , Tetracycline/analysis , Tetracycline/blood , Milk/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Metal Nanoparticles/chemistry , Animals , Humans , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/blood
9.
J Clin Lab Anal ; 38(8): e25025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563451

ABSTRACT

OBJECTIVE: This study aimed to indicate whether a declined plasma concentration of valproic acid (VPA) induced by co-administration of meropenem (MEPM) could affect the antiepileptic efficacy of VPA. METHODS: We retrospectively reviewed data of hospitalized patients who were diagnosed with status epilepticus or epilepsy between 2010 and 2019. Patients co-administered VPA and MEPM during hospitalization were screened and assigned to the exposure group, while those co-administerd VPA and other broad-spectrum antibiotics were allocated to the control group. RESULTS: The exposure group and control group included 50 and 11 patients, respectively. With a similar dosage of VPA, the plasma concentration of VPA significantly decreased during co-administration (24.6 ± 4.3 µg/mL) compared with that before co-administration (88.8 ± 13.6 µg/mL, p < 0.0001), and it was partly recovered with the termination of co-administration (39.8 ± 13.2 µg/mL, p = 0.163) in the exposure group. The inverse probability of treatment weighting estimated the treatment efficacy via changes in seizure frequency, seizure duration, and concomitant use of antiepileptic drugs, which were not significantly different between the exposure and control groups. In the exposure group, there was no significant differences in seizure frequency between the periods of before-during and before-after (p = 0.074 and 0.153, respectively). Seizure duration during VPA-MEPM co-administration was not significantly different from that before co-administration (p = 0.291). CONCLUSIONS: In this study, the reduced plasma concentration of VPA induced by the co-administration of MEPM did not affect the antiepileptic efficacy of VPA. This conclusion should be interpreted with caution, and more research is warranted. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2000034567. Registered on 10 July 2020.


Subject(s)
Anticonvulsants , Epilepsy , Meropenem , Valproic Acid , Humans , Valproic Acid/blood , Valproic Acid/therapeutic use , Valproic Acid/administration & dosage , Anticonvulsants/blood , Anticonvulsants/therapeutic use , Meropenem/blood , Meropenem/administration & dosage , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Epilepsy/drug therapy , Epilepsy/blood , Drug Interactions , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Treatment Outcome
10.
J Vet Intern Med ; 38(3): 1825-1834, 2024.
Article in English | MEDLINE | ID: mdl-38647141

ABSTRACT

BACKGROUND: Pharmacokinetics of amikacin administered IV to neonatal foals are described, but little data are available regarding the plasma concentrations contributed by concurrent intra-articular (IA) administration. HYPOTHESIS/OBJECTIVES: Compare the pharmacokinetics of amikacin when the total dose is administered IV compared to being divided between IV and IA routes of administration in neonatal foals and predict the plasma concentrations from various combined IV and IA dosing regimens. ANIMALS: Eight healthy neonatal foals. METHODS: Foals received 3 amikacin treatment protocols: (1) IV-only (25 mg/kg q24h IV), (2) concurrent IV and IA (16.7 mg/kg q24h IV and 8.3 mg/kg q24h into 1 tarsocrural joint), and (3) IA-only (8.3 mg/kg q24h into 1 tarsocrural joint). Protocols were administered for 3 days beginning at 7, 14, and 21 days of age. Plasma concentrations ≥53 µg/mL at 30 minutes were considered therapeutic for isolates with intermediate susceptibility. RESULTS: Foal age was a significant variable. The IV-only protocol met or exceeded the 30-minute plasma concentrations considered therapeutic (mean µg/mL [95% confidence interval, CI]) in 7- to 9-day-old (54.0 [52.2-56.9]), 14- to 16-day-old (58.1 [55.2-61.0]), and 21- to 23-day-old (66.6 [63.7-69.6]) foals. Concurrent IV and IA protocol did not reach the 30-minute concentration considered therapeutic in 7- to 9-day-old foals (46.5 [43.6-49.4]) but did in 14- to 16-day-old (62.9 [60.0-65.8]) and 21-to 23-day-old (62.6 [59.7-65.6]) foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Concurrent IV and IA administration of amikacin produces 30-minute plasma concentrations considered therapeutic in foals 14 to 23 days old, but concentrations observed in younger foals might be below those considered therapeutic for isolates with intermediate susceptibility to amikacin.


Subject(s)
Amikacin , Animals, Newborn , Anti-Bacterial Agents , Animals , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/blood , Horses/blood , Injections, Intra-Articular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Male , Female , Injections, Intravenous/veterinary
11.
Clin Chim Acta ; 559: 119690, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677452

ABSTRACT

BACKGROUND AND AIMS: Intensive care antibiotic treatment faces challenges due to substantial pharmacokinetic differences in critically ill patients. Individualized antibiotic dosing guided by therapeutic drug monitoring (TDM) is considered to minimize the risk of treatment failure and toxicity. This study aimed to develop a valid method for simultaneous LC-MS/MS quantification of 10 drugs frequently used in intensive care antibiotic therapy for which TDM-guided dosing is recommended: piperacillin, meropenem, flucloxacillin, cefuroxime, vancomycin, colistin A and B, linezolid, ciprofloxacin and tazobactam. METHODS AND RESULTS: Thorough optimization of sample preparation and chromatography resulted in a fast and simple method based on protein precipitation of 50 µL plasma or serum and gradient elution using an Acquity UPLC HSS-T3 column. Electrospray ionization-triple quadrupole mass spectrometry in dynamic multiple reaction monitoring was used for quantification, covering the therapeutic range of each drug compound. Validation following EMA and FDA recommendations, including inter-platform validation and inter-laboratory comparison, demonstrated high accuracy, precision and robustness of the new method. The assay was successfully used to monitor plasma antibiotic levels of critically ill patients (n = 35). CONCLUSION: The established multiplex method covers major drug classes with documented dosing challenges, provides a reliable basis for the implementation of high-throughput TDM, and its application confirmed the clinical impact of TDM in a real-world setting.


Subject(s)
Critical Illness , Drug Monitoring , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Drug Monitoring/methods , Chromatography, High Pressure Liquid , Anti-Bacterial Agents/blood , Male , Female , Middle Aged
12.
J Antimicrob Chemother ; 79(6): 1313-1319, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38573940

ABSTRACT

BACKGROUND: Knowledge regarding CNS pharmacokinetics of moxifloxacin is limited, with unknown consequences for patients with meningitis caused by bacteria resistant to beta-lactams or caused by TB. OBJECTIVE: (i) To develop a novel porcine model for continuous investigation of moxifloxacin concentrations within brain extracellular fluid (ECF), CSF and plasma using microdialysis, and (ii) to compare these findings to the pharmacokinetic/pharmacodynamic (PK/PD) target against TB. METHODS: Six female pigs received an intravenous single dose of moxifloxacin (6 mg/kg) similar to the current oral treatment against TB. Subsequently, moxifloxacin concentrations were determined by microdialysis within five compartments: brain ECF (cortical and subcortical) and CSF (ventricular, cisternal and lumbar) for the following 8 hours. Data were compared to simultaneously obtained plasma samples. Chemical analysis was performed by high pressure liquid chromatography with mass spectrometry. The applied PK/PD target was defined as a maximum drug concentration (Cmax):MIC ratio >8. RESULTS: We present a novel porcine model for continuous in vivo CNS pharmacokinetics for moxifloxacin. Cmax and AUC0-8h within brain ECF were significantly lower compared to plasma and lumbar CSF, but insignificantly different compared to ventricular and cisternal CSF. Unbound Cmax:MIC ratio across all investigated compartments ranged from 1.9 to 4.3. CONCLUSION: A single dose of weight-adjusted moxifloxacin administered intravenously did not achieve adequate target site concentrations within the uninflamed porcine brain ECF and CSF to reach the applied TB CNS target.


Subject(s)
Brain , Extracellular Fluid , Microdialysis , Moxifloxacin , Animals , Moxifloxacin/pharmacokinetics , Moxifloxacin/administration & dosage , Swine , Female , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Brain/metabolism , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/cerebrospinal fluid , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Plasma/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/cerebrospinal fluid , Fluoroquinolones/administration & dosage , Fluoroquinolones/blood , Models, Animal , Chromatography, High Pressure Liquid , Administration, Intravenous , Mass Spectrometry , Microbial Sensitivity Tests
14.
J Antimicrob Chemother ; 79(5): 1182-1186, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546808

ABSTRACT

OBJECTIVES: The use of extracorporeal membrane oxygenation (ECMO) may alter blood levels of several drugs, including antibiotics, leading to under dosing of these drugs and thus to potential treatment failure. No data exist on pharmacokinetics of new antimicrobial, in particular ceftazidime/avibactam. We therefore perform this study to evaluate ceftazidime/avibactam blood levels in ECMO patients and find factors associated with underdosing. METHODS: Retrospective observational study of patients on ECMO having received ceftazidime/avibactam and in whom trough blood levels of ceftazidime and avibactam were available. Main outcome measurement was the number of patients with ceftazidime and avibactam blood levels above predefined cut-off values, derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints for Enterobacteriaceae and Pseudomonas aeruginosa, namely 8 mg/L for ceftazidime and 4 mg/L for avibactam, and explored factors associated with underdosing. RESULTS: Twenty-three ceftazidime/avibactam trough levels were available in 14 ECMO patients, all of them having received veno-venous ECMO for SARS-CoV-2-associated pneumonia. Although ceftazidime levels were above 8 mg/L in all except one patient, nine (39%) of the avibactam dosages were below 4 mg/L. Increased renal clearance (creatinine clearance > 130 mL/min) was the main factor associated with under dosing, since 7 out of the 10 dosages below the predefined cut-offs were measured in patients with this condition. CONCLUSIONS: In ECMO patients receiving ceftazidime/avibactam, ceftazidime and avibactam serum levels are above EUCAST breakpoints in most cases, justifying the use of normal dosing in ECMO patients. Increased renal clearance may lead to ceftazidime and avibactam under dosing.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Extracorporeal Membrane Oxygenation , Humans , Ceftazidime/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/therapeutic use , Ceftazidime/blood , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/blood , Male , Female , Retrospective Studies , Middle Aged , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/blood , Adult , Aged , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Enterobacteriaceae/drug effects
15.
Int J Clin Pharmacol Ther ; 62(6): 259-266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38529928

ABSTRACT

BACKGROUND: Vancomycin is being used for the treatment of a variety of infections caused by methicillin resistant Staphylococcus aureus and methicillin susceptible Staphylococcus aureus. Therapeutic drug monitoring (TDM) is highly recommended for ensuring the safe and effective therapy with vancomycin. A reliable and cost-effective bioanalytical method is required for TDM as well as pharmacokinetic studies of vancomycin. MATERIALS AND METHODS: A selective, sensitive, and cost effective HPLC method was developed and validated for quantification of vancomycin concentrations in human plasma. The mobile phase was a mixture of buffer (50 mM ammonium dihydrogen phosphate, pH 2.4) and acetonitrile 88 : 12 v/v. The separation was carried on C18 column (125 × 4.6 mm, particle size 5 µm) with isocratic flow rate of 0.370 mL/min at room temperature with UV detection at 215 nm. The method was validated for sensitivity, accuracy, and precision as well as stability of vancomycin in human plasma by following European Medicine Agency (EMA) guideline. Therapeutic drug monitoring of vancomycin was performed by quantifying the trough concentrations of vancomycin in 65 human plasma samples after administration of therapeutically relevant dose. RESULTS: The developed method was sensitive enough to quantify vancomycin concentrations as low as 0.25 mg/L in human plasma. Moreover, the method was proved accurate and precise in terms of quantifying the unknown concentration of vancomycin. The evaluation of short-term, long-term, and freeze-thaw stability proved the stability of vancomycin in human plasma. The TDM of vancomycin by using this method showed that 39 (60%) samples were within the target trough concentration range (TTCR), i.e. 10 - 20 mg/L, while 23 samples (35.4%) were below the TTCR, and 3 samples (4.6%) were above this range. CONCLUSION: The developed method is sensitive and cost effective for quantification of vancomycin in human plasma. The results of sample analysis shows that the developed method can be used reliably for TDM of vancomycin.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Vancomycin , Vancomycin/pharmacokinetics , Vancomycin/blood , Humans , Drug Monitoring/methods , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/blood , Reproducibility of Results
16.
Pediatr Pulmonol ; 59(6): 1740-1746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501330

ABSTRACT

BACKGROUND: People with cystic fibrosis (PwCF) are frequently hospitalized for treatment of pulmonary exacerbation. The Cystic Fibrosis Foundation Pulmonary Guidelines support the use of intravenous aminoglycosides with therapeutic drug monitoring for the treatment of pulmonary exacerbation due to Pseudomonas aeruginosa. Serum intravenous tobramycin concentrations are commonly collected by peripheral venipuncture (PV). Discomfort associated with collection of samples by PV prompts collection via PICC, but the accuracy of intravenous tobramycin serum levels collected by PICC has not been documented in adult PwCF. The primary study objective was to evaluate the difference between intravenous tobramycin serum levels collected by PV and PICC in adult PwCF. METHODS: The authors conducted a prospective case-control study of adult PwCF admitted to University of Utah Health for a pulmonary exacerbation receiving tobramycin by a single lumen PICC. The authors compared tobramycin peak and random serum levels collected by PV and PICC using a detailed flush and waste protocol. RESULTS: The authors analyzed a total of 19 patients with peripheral and PICC samples. The mean tobramycin peak collected by PV (27.2 mcg/mL) was similar to the mean peak collected by PICC (26.9 mcg/mL) (paired samples Wilcoxon signed-rank test, p = .94). The correlation coefficient was 0.88 (95% CI = 0.85-0.91, p < .001). CONCLUSION: Tobramycin serum samples collected by PICC appear to be similar in value to PV collections. Collecting aminoglycoside levels by PICC rather than PV may reduce patient discomfort and improve quality of life. Additional multicenter studies are needed to confirm these results.


Subject(s)
Anti-Bacterial Agents , Cystic Fibrosis , Pseudomonas Infections , Tobramycin , Humans , Cystic Fibrosis/blood , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Male , Female , Prospective Studies , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Tobramycin/blood , Tobramycin/administration & dosage , Adult , Case-Control Studies , Pseudomonas Infections/drug therapy , Pseudomonas Infections/blood , Pseudomonas Infections/complications , Catheterization, Peripheral , Young Adult , Drug Monitoring/methods , Aminoglycosides/blood , Aminoglycosides/administration & dosage , Aminoglycosides/therapeutic use , Adolescent , Pseudomonas aeruginosa/drug effects
17.
Antimicrob Agents Chemother ; 68(5): e0141523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501807

ABSTRACT

Daptomycin is a concentration-dependent lipopeptide antibiotic for which exposure/effect relationships have been shown. Machine learning (ML) algorithms, developed to predict the individual exposure to drugs, have shown very good performances in comparison to maximum a posteriori Bayesian estimation (MAP-BE). The aim of this work was to predict the area under the blood concentration curve (AUC) of daptomycin from two samples and a few covariates using XGBoost ML algorithm trained on Monte Carlo simulations. Five thousand one hundred fifty patients were simulated from two literature population pharmacokinetics models. Data from the first model were split into a training set (75%) and a testing set (25%). Four ML algorithms were built to learn AUC based on daptomycin blood concentration samples at pre-dose and 1 h post-dose. The XGBoost model (best ML algorithm) with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment was evaluated in both the test set and the simulations from the second population pharmacokinetic model (validation). The ML model based on the two concentrations, the differences between these concentrations, and five other covariates (sex, weight, daptomycin dose, creatinine clearance, and body temperature) yielded very good AUC estimation in the test (relative bias/RMSE = 0.43/7.69%) and validation sets (relative bias/RMSE = 4.61/6.63%). The XGBoost ML model developed allowed accurate estimation of daptomycin AUC using C0, C1h, and a few covariates and could be used for exposure estimation and dose adjustment. This ML approach can facilitate the conduct of future therapeutic drug monitoring (TDM) studies.


Subject(s)
Anti-Bacterial Agents , Area Under Curve , Bayes Theorem , Daptomycin , Machine Learning , Monte Carlo Method , Daptomycin/pharmacokinetics , Daptomycin/blood , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/blood , Male , Female , Algorithms , Middle Aged , Adult , Aged
18.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38412607

ABSTRACT

OBJECTIVE: To evaluate and compare the pharmacokinetic parameters of SC ceftazidime administered at 20 and 40 mg/kg to red-eared sliders. ANIMALS: 8 adult red-eared sliders (Trachemys scripta elegans). METHODS: In a sequential, 2-period study with a 3-week washout period between treatments, ceftazidime was administered SC to turtles at 20 and 40 mg/kg. Blood samples were collected from the subcarapacial sinus at 0, 24, 48, 72, 96, and 120 hours after ceftazidime administration. Plasma ceftazidime concentrations were quantified using reversed-phase HPLC. RESULTS: Mean plasma half-life after 20- and 40-mg/kg dosing was 39.75 ± 8.0 hours and 33.03 ± 6.56 hours, respectively. Mean maximum plasma concentration after 20- and 40-mg/kg dosing was 71.0 ± 15.93 µg/mL and 120.0 ± 30.62 µg/mL, respectively. Mean plasma ceftazidime concentrations remained ≥ 8 µg/mL, the theoretical MIC for various reptile pathogens for all time points. CLINICAL RELEVANCE: Results indicate that ceftazidime dosed at either 20 or 40 mg/kg produces plasma concentrations exceeding the theoretical MIC of various reptile pathogens for at least 120 hours. An ideal dosing interval could not be determined, as all plasma concentrations remained above the threshold of interest for all time points. Follow-up studies should focus on establishing a dosing interval and more rigorous monitoring for potential adverse effects.


Subject(s)
Anti-Bacterial Agents , Ceftazidime , Turtles , Animals , Turtles/blood , Ceftazidime/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/blood , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Injections, Subcutaneous/veterinary , Half-Life , Area Under Curve , Male , Female , Dose-Response Relationship, Drug
19.
J Vet Pharmacol Ther ; 47(3): 215-225, 2024 May.
Article in English | MEDLINE | ID: mdl-38189474

ABSTRACT

Enrofloxacin (ENR) residues in yellow catfish (Pelteobagrus fulvidraco) often exceed the standard due to excessive use. This study explored the pharmacokinetics of ENR and its metabolite ciprofloxacin (CIP) in yellow catfish following a single dose of 10 mg/kg body weight via intramuscular injection (IM), oral gavage (PO), or a 5-h drug bath at 10 mg/L and 25°C. High-performance liquid chromatography-mass spectrometry was used to determine the ENR and CIP concentrations in various tissues. The highest ENR concentration occurred with IM administration, peaking at 4.124 mg/L in the plasma, 8.359 mg/kg in the kidney, 6.272 mg/kg in the liver, and 5.192 mg/kg in the muscle. However, PO administration resulted in the longest metabolic time, with elimination half-lives of 56.47 h in plasma, 86.43 h in the kidney, 76.25 h in the liver, and 64.75 h in muscle. Additionally, the area under the concentration-time curve values for IM, PO, and bath administration in yellow catfish plasma were 108.36, 88.96, and 22.08 mg·h/L, respectively. These results indicate the effectiveness of all three administration methods in treating bacterial diseases in yellow catfish. The selection of an appropriate administration method depends on the minimal inhibitory concentration of ENR against pathogenic bacteria. Yellow catfish subjected to PO and IM administration require longer resting periods before they can be marketed than those receiving drug bath administration.


Subject(s)
Anti-Bacterial Agents , Catfishes , Enrofloxacin , Animals , Catfishes/metabolism , Enrofloxacin/pharmacokinetics , Enrofloxacin/administration & dosage , Injections, Intramuscular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Administration, Oral , Half-Life , Area Under Curve , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/administration & dosage , Ciprofloxacin/blood
20.
BMC Pediatr ; 23(1): 528, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880633

ABSTRACT

BACKGROUND: It is usually difficult for the trough concentration of vancomycin to reach the recommended lower limit of 10 mg/L per the label dose in the paediatric population. Moreover, children with haematologic diseases who suffer from neutropenia are more likely to have lower exposure of vancomycin, and the risk factors have been poorly explored. METHOD: We reviewed and analysed the initial trough concentration of vancomycin and synchronous cytometry and biochemical parameters in the blood of 1453 paediatric patients with haematologic diseases over a 6 year period, from 2017 to 2022. RESULTS: Forty-five percent of the enrolled children had vancomycin trough concentrations below 5 mg/L after receiving a dose of 40 mg/kg/day, and the multiple regression showed that age (OR = 0.881, 95% CI 0.855 to 0.909, P < 0.001), BMI (OR = 0.941, 95% CI 0.904 to 0.980, P = 0.003) and the glomerular filtration rate (OR = 1.006, 95% CI 1.004 to 1.008, P < 0.001) were independent risk factors. A total of 79.7% of the children experienced augmented renal clearance, which was closely correlated to age-associated levels of serum creatinine. The vancomycin trough concentration was higher in children with aplastic anaemia than in those with other haematologic diseases due to a higher BMI and a lower glomerular filtration rate. CONCLUSION: Age-associated augmented renal clearance and low BMI values contributed to suboptimal trough concentrations of vancomycin in children with haematologic diseases, and the effects of long-term use of cyclosporine and glucocorticoids need to be taken into account.


Subject(s)
Hematologic Diseases , Vancomycin , Child , Humans , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/therapeutic use , Body Mass Index , Hematologic Diseases/drug therapy , Vancomycin/blood , Vancomycin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...