Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.401
Filter
1.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article in English | MEDLINE | ID: mdl-38708178

ABSTRACT

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
2.
AAPS PharmSciTech ; 25(5): 100, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714602

ABSTRACT

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic concept, which helps to judge the effects of biopharmceutical properties of drug product such as in vitro dissolution on its pharmacokinetic and in vivo performance. With the application of virtual bioequivalence (VBE) study, the drug product development using model-based approach can help in evaluating the possibility of extending BCS-based biowaiver. Therefore, the current study was intended to develop PBPK model as well as in vitro in vivo extrapolation (IVIVE) for BCS class III drug i.e. cefadroxil. A PBPK model was created in GastroPlus™ 9.8.3 utilizing clinical data of immediate-release cefadroxil formulations. By the examination of simulated and observed plasma drug concentration profiles, the predictability of the proposed model was assessed for the prediction errors. Furthermore, mechanistic deconvolution was used to create IVIVE, and the plasma drug concentration profiles and pharmacokinetic parameters were predicted for different virtual formulations with variable cefadroxil in vitro release. Virtual bioequivalence study was also executed to assess the bioequivalence of the generic verses the reference drug product (Duricef®). The developed PBPK model satisfactorily predicted Cmax and AUC0-t after cefadroxil single and multiple oral dose administrations, with all individual prediction errors within the limits except in a few cases. Second order polynomial correlation function obtained accurately predict in vivo drug release and plasma concentration profile of cefadroxil test and reference (Duricef®) formulation. The VBE study also proved test formulation bioequivalent to reference formulation and the statistical analysis on pharmacokinetic parameters reported 90% confidence interval for Cmax and AUC0-t in the FDA acceptable limits. The analysis found that a validated and verified PBPK model with a mechanistic background is as a suitable approach to accelerate generic drug development.


Subject(s)
Cefadroxil , Models, Biological , Therapeutic Equivalency , Cefadroxil/pharmacokinetics , Cefadroxil/administration & dosage , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Capsules/pharmacokinetics , Drug Liberation , Male , Adult , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Computer Simulation , Young Adult , Administration, Oral
3.
Sci Rep ; 14(1): 10173, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702351

ABSTRACT

This study aimed to explore the changes of pharmacokinetic parameters after meropenem in patients with abdominal septic shock after gastrointestinal perforation, and to simulate the probability of different dosing regimens achieving different pharmacodynamic goals. The study included 12 patients, and utilized high performance liquid chromatography-tandem mass spectrometry to monitor the plasma concentration of meropenem. The probability of target attainment (PTA) for different minimum inhibitory concentration (MIC) values and %fT > 4MIC was compared among simulated dosing regimens. The results showed that in 96 blood samples from 12 patients, the clearance (CL) of meropenem in the normal and abnormal creatinine clearance subgroups were 7.7 ± 1.8 and 4.4 ± 1.1 L/h, respectively, and the apparent volume of distribution (Vd) was 22.6 ± 5.1 and 17.2 ± 5.8 L, respectively. 2. Regardless of the subgroup, 0.5 g/q6h infusion over 6 h regimen achieved a PTA > 90% when MIC ≤ 0.5 mg/L. 1.0 g/q6h infusion regimen compared with other regimen, in most cases, the probability of making PTA > 90% is higher. For patients at low MIC, 0.5 g/q6h infusion over 6 h may be preferable. For patients at high MIC, a dose regimen of 1.0 g/q6 h infusion over 6 h may be preferable. Further research is needed to confirm this exploratory result.


Subject(s)
Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Shock, Septic , Humans , Meropenem/pharmacokinetics , Meropenem/administration & dosage , Meropenem/therapeutic use , Shock, Septic/drug therapy , Male , Female , Middle Aged , Aged , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Intestinal Perforation , Aged, 80 and over
4.
Front Endocrinol (Lausanne) ; 15: 1326179, 2024.
Article in English | MEDLINE | ID: mdl-38774229

ABSTRACT

Aims/hypothesis: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. Methods: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). Results: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 µgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 µgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 µgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 µgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). Conclusions: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Microcirculation , Humans , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Microcirculation/drug effects , Male , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Middle Aged , Aged , Administration, Intravenous
5.
Sci Rep ; 14(1): 11706, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778123

ABSTRACT

Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli, offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MICCIP 0.023-1 mg/L and MICCST 0.5-0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC50) in combination was 160% of the EC50 in monodrug experiments, while for colistin, the change in EC50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Colistin , Computer Simulation , Escherichia coli , Microbial Sensitivity Tests , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/pharmacology , Colistin/pharmacokinetics , Colistin/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Humans , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Drug Therapy, Combination , Models, Biological
6.
BMC Vet Res ; 20(1): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778405

ABSTRACT

BACKGROUND: Commercial tobramycin ophthalmic solution is frequently used empirically to treat ocular disorders in equines, despite being primarily formulated for use in humans. It has been noted that tobramycin MIC90 concentration (minimal inhibitory concentration to 90% of microbial growth) rapidly declined following topical administration. It is hypothesized that adjustment of the pH of the empirically used tobramycin ophthalmic solution -prepared for human use- with the pH of the tears of donkeys, could increase the bioavailability of the drug and subsequently improve its penetration to the aqueous humor. Therefore, this study aimed to evaluate the impact of pH adjustment of the empirically used tobramycin ophthalmic solution on MIC90 concentration in tears and aqueous humor of donkeys (Equus asinus). The study was conducted on six (n = 6) clinically healthy donkeys. In each donkey, one eye was randomly selected to receive 210 µg tobramycin of the commercial tobramycin (CT) and used as a positive control (C group, n = 6). The other eye (treated eye) received 210 µg of the modified tobramycin ophthalmic solution (MT) (T group, n = 6). Tears and aqueous humor samples were collected 5-, 10-, 15-, 30- min, and 1-, 2-, 4-, and 6 h post-instillation. RESULTS: Modifying the pH of the empirically used commercial tobramycin ophthalmic solution in donkeys at a pH of 8.26 enhanced the drug's bioavailability. The MIC90 of the most hazardous bacteria isolated from equines' eyes such as Pseudomonas aeruginosa (MIC90 = 128 µg/ml) and Staphylococcus aureus (MIC90 = 256 µg/ml) was covered early (5 min post-instillation) and over a longer period in donkey tears (239-342 min) and aqueous humor (238-330 min) with the modified tobramycin solution. CONCLUSIONS: Adjustment of the pH of the commercial tobramycin ophthalmic solution, empirically used by veterinarians to treat donkeys' ophthalmic infections at a pH of 8.26, isotonic with the donkeys' tears pH, resulting in higher concentrations of tobramycin in tears and aqueous humor for a longer time.


Subject(s)
Anti-Bacterial Agents , Aqueous Humor , Equidae , Microbial Sensitivity Tests , Ophthalmic Solutions , Tears , Tobramycin , Animals , Tobramycin/pharmacology , Tobramycin/administration & dosage , Tobramycin/pharmacokinetics , Aqueous Humor/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Tears/drug effects , Hydrogen-Ion Concentration
7.
J Mass Spectrom ; 59(6): e5041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751321

ABSTRACT

Numerous studies have suggested that intra-articular administration of antibiotics following primary revision surgery may be one of the methods for treating prosthetic joint infection (PJI). Vancomycin and meropenem are the two most commonly used antibiotics for local application. Determining the concentrations of vancomycin and meropenem in the serum and synovial fluid of patients with PJI plays a significant role in further optimizing local medication schemes and effectively eradicating biofilm infections. This study aimed to establish a rapid, sensitive, and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining the concentrations of vancomycin and meropenem in human serum and synovial fluid. Serum samples were processed using acetonitrile precipitation of proteins and dichloromethane extraction, while synovial fluid samples were diluted before analysis. Chromatographic separation was achieved in 6 min on a Waters Acquity UPLC BEH C18 column, with the mobile phase consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Quantification was carried out using a Waters XEVO TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in positive ion mode. The multiple reaction monitoring (MRM) mode was employed to detect the following quantifier ion transitions: 717.95-99.97 (norvancomycin), 725.90-100.04 (vancomycin), 384.16-67.99 (meropenem). The method validation conformed to the guidelines of the FDA and the Chinese Pharmacopoeia. The method demonstrated good linearity within the range of 0.5-50 µg/ml for serum and 0.5-100 µg/ml for synovial fluid. Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, matrix effect, and stability validation results all met the required standards. This method has been successfully applied in the pharmacokinetic/pharmacodynamic (PK/PD) studies of patients with PJI.


Subject(s)
Anti-Bacterial Agents , Meropenem , Prosthesis-Related Infections , Synovial Fluid , Tandem Mass Spectrometry , Vancomycin , Humans , Tandem Mass Spectrometry/methods , Vancomycin/blood , Vancomycin/analysis , Vancomycin/pharmacokinetics , Synovial Fluid/chemistry , Meropenem/analysis , Meropenem/blood , Meropenem/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/blood , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Reproducibility of Results , Male , Limit of Detection , Middle Aged , Liquid Chromatography-Mass Spectrometry
8.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724994

ABSTRACT

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Subject(s)
Cinnamomum zeylanicum , Escherichia coli , Oils, Volatile , Animals , Oils, Volatile/pharmacokinetics , Oils, Volatile/administration & dosage , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Swine , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Salmonella/drug effects , Satureja/chemistry , Plant Oils/pharmacokinetics , Plant Oils/chemistry , Male , Centrifugation
9.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792031

ABSTRACT

Amoxicillin and sulbactam are widely used in animal food compounding. Amoxicillin-sulbactam hybrid molecules are bicester compounds made by linking amoxicillin and sulbactam with methylene groups and have good application prospects. However, the residual elimination pattern of these hybrid molecules in animals needs to be explored. In the present study, the amoxicillin-sulbactam hybrid molecule (AS group) and a mixture of amoxicillin and sulbactam (mixture group) were administered to rats by gavage, and the levels of the major metabolites of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were determined by UPLC-MS/MS. The residue elimination patterns of the major metabolites in the liver, kidney, urine, and feces of rats in the AS group and the mixture group were compared. The results showed that the total amount of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and the highest concentration of sulbactam in the liver and kidney samples of the AS group and the mixture group appeared at 1 h after drug withdrawal. Between 1 h and 12 h post discontinuation, the total amount of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine in the two tissues decreased rapidly, and the elimination half-life of the AS group was significantly higher than that in the mixture group (p < 0.05); the residual amount of sulbactam also decreased rapidly, and the elimination half-life was not significantly different (p > 0.05). In 72 h urine samples, the total excretion rates were 60.61 ± 2.13% and 62.62 ± 1.73% in the AS group and mixture group, respectively. The total excretion rates of fecal samples (at 72 h) for the AS group and mixture group were 9.54 ± 0.26% and 10.60 ± 0.24%, respectively. These results showed that the total quantity of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine was eliminated more slowly in the liver and kidney of the AS group than those of the mixture group and that the excretion rate through urine and feces was essentially the same for both groups. The residual elimination pattern of the hybrid molecule in rats determined in this study provides a theoretical basis for the in-depth development and application of hybrid molecules, as well as guidelines for the development of similar drugs.


Subject(s)
Amoxicillin , Sulbactam , Tandem Mass Spectrometry , Animals , Sulbactam/urine , Sulbactam/pharmacokinetics , Sulbactam/metabolism , Amoxicillin/urine , Amoxicillin/pharmacokinetics , Amoxicillin/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Liver/metabolism , Rats, Sprague-Dawley , Kidney/metabolism , Feces/chemistry , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/pharmacokinetics , Tissue Distribution , Liquid Chromatography-Mass Spectrometry
10.
Pharm Res ; 41(5): 899-910, 2024 May.
Article in English | MEDLINE | ID: mdl-38684563

ABSTRACT

BACKGROUND: Evaluating drug transplacental clearance is vital for forecasting fetal drug exposure. Ex vivo human placenta perfusion experiments are the most suitable approach for this assessment. Various in silico methods are also proposed. This study aims to compare these prediction methods for drug transplacental clearance, focusing on the large molecular weight drug vancomycin (1449.3 g/mol), using maternal-fetal physiologically based pharmacokinetic (m-f PBPK) modeling. METHODS: Ex vivo human placenta perfusion experiments, in silico approaches using intestinal permeability as a substitute (quantitative structure property relationship (QSPR) model and Caco-2 permeability in vitro-in vivo correlation model) and midazolam calibration model with Caco-2 scaling were assessed for determining the transplacental clearance (CLPD) of vancomycin. The m-f PBPK model was developed stepwise using Simcyp, incorporating the determined CLPD values as a crucial input parameter for transplacental kinetics. RESULTS: The developed PBPK model of vancomycin for non-pregnant adults demonstrated excellent predictive performance. By incorporating the CLPD parameterization derived from ex vivo human placenta perfusion experiments, the extrapolated m-f PBPK model consistently predicted maternal and fetal concentrations of vancomycin across diverse doses and distinct gestational ages. However, when the CLPD parameter was derived from alternative prediction methods, none of the extrapolated maternal-fetal PBPK models produced fetal predictions in line with the observed data. CONCLUSION: Our study showcased that combination of ex vivo human placenta perfusion experiments and m-f PBPK model has the capability to predict fetal exposure for the large molecular weight drug vancomycin, whereas other in silico approaches failed to achieve the same level of accuracy.


Subject(s)
Fetus , Maternal-Fetal Exchange , Models, Biological , Placenta , Vancomycin , Humans , Vancomycin/pharmacokinetics , Pregnancy , Female , Placenta/metabolism , Caco-2 Cells , Fetus/metabolism , Computer Simulation , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Perfusion , Adult , Quantitative Structure-Activity Relationship
11.
J Vet Intern Med ; 38(3): 1825-1834, 2024.
Article in English | MEDLINE | ID: mdl-38647141

ABSTRACT

BACKGROUND: Pharmacokinetics of amikacin administered IV to neonatal foals are described, but little data are available regarding the plasma concentrations contributed by concurrent intra-articular (IA) administration. HYPOTHESIS/OBJECTIVES: Compare the pharmacokinetics of amikacin when the total dose is administered IV compared to being divided between IV and IA routes of administration in neonatal foals and predict the plasma concentrations from various combined IV and IA dosing regimens. ANIMALS: Eight healthy neonatal foals. METHODS: Foals received 3 amikacin treatment protocols: (1) IV-only (25 mg/kg q24h IV), (2) concurrent IV and IA (16.7 mg/kg q24h IV and 8.3 mg/kg q24h into 1 tarsocrural joint), and (3) IA-only (8.3 mg/kg q24h into 1 tarsocrural joint). Protocols were administered for 3 days beginning at 7, 14, and 21 days of age. Plasma concentrations ≥53 µg/mL at 30 minutes were considered therapeutic for isolates with intermediate susceptibility. RESULTS: Foal age was a significant variable. The IV-only protocol met or exceeded the 30-minute plasma concentrations considered therapeutic (mean µg/mL [95% confidence interval, CI]) in 7- to 9-day-old (54.0 [52.2-56.9]), 14- to 16-day-old (58.1 [55.2-61.0]), and 21- to 23-day-old (66.6 [63.7-69.6]) foals. Concurrent IV and IA protocol did not reach the 30-minute concentration considered therapeutic in 7- to 9-day-old foals (46.5 [43.6-49.4]) but did in 14- to 16-day-old (62.9 [60.0-65.8]) and 21-to 23-day-old (62.6 [59.7-65.6]) foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Concurrent IV and IA administration of amikacin produces 30-minute plasma concentrations considered therapeutic in foals 14 to 23 days old, but concentrations observed in younger foals might be below those considered therapeutic for isolates with intermediate susceptibility to amikacin.


Subject(s)
Amikacin , Animals, Newborn , Anti-Bacterial Agents , Animals , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/blood , Horses/blood , Injections, Intra-Articular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Male , Female , Injections, Intravenous/veterinary
12.
Expert Opin Drug Deliv ; 21(4): 611-625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588551

ABSTRACT

INTRODUCTION: Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED: This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION: In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.


Subject(s)
Administration, Intranasal , Anti-Bacterial Agents , Biological Availability , Drug Delivery Systems , Humans , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Animals , Drug Development/methods , Drug Resistance, Bacterial , Nasal Cavity , Drug Stability , Chemistry, Pharmaceutical
13.
Clin Drug Investig ; 44(5): 343-355, 2024 May.
Article in English | MEDLINE | ID: mdl-38615091

ABSTRACT

BACKGROUND: Tegoprazan is a potassium-competitive acid blocker that inhibits gastric acid and which may be used for eradicating Helicobacter pylori. This study focuses on the pharmacokinetic interaction and safety between tegoprazan and the combination of clarithromycin, amoxicillin and bismuth in healthy Chinese subjects. METHODS: An open-label, three-period, single-center, multiple-dosage, single-sequence, phase I trial was conducted in 22 healthy subjects. In period 1, the subjects took tegoprazan 50 mg twice daily for 7 days, and in period 2 they were administered clarithromycin 500 mg, amoxicillin 1000 mg and bismuth potassium citrate 600 mg twice daily for 7 days (days 14-20). Tegoprazan, clarithromycin, amoxicillin and bismuth potassium citrate were then administered in combination for 7 days (days 21-27) in period 3. Blood samples were collected up to 12 h after the last dose of each period. Safety assessments were performed in each period. RESULTS: The geometric mean ratios (GMRs) [90% confidence interval (CI)] of maximum plasma concentration at steady state (Cmax,ss) and area under the plasma concentration-time curve over the dosing interval (AUCτ) at steady state were 195.93% (175.52-218.71%) and 287.54% (263.28-314.04%) for tegoprazan and 423.23% (382.57-468.22%) and 385.61% (354.62-419.30%) for tegoprazan metabolite M1, respectively. The GMRs (90% CI) of Cmax,ss and AUCτ were 83.69% (77.44-90.45%) and 110.30% (102.74-118.41%) for clarithromycin, 126.25% (114.73-138.93%) and 146.94% (135.33-159.55%) for 14-hydroxyclarithromycin, 75.89% (69.73-82.60%) and 94.34% (87.94-101.20%) for amoxicillin, and 158.43% (125.43-200.11%) and 183.63% (156.42-215.58%) for bismuth, respectively. All reported adverse events were mild. The frequency of adverse events during the coadministration stage was not higher than that during the single- or triple-drug administration stages. CONCLUSION: The plasma exposure of tegoprazan, M1, 14-hydroxyclarithromycin and bismuth was increased after the coadministration of tegoprazan, clarithromycin, amoxicillin and bismuth. The coadministration exhibited favorable safety and tolerability. CLINICAL TRIALS REGISTRATION: CTR20230643.


Subject(s)
Amoxicillin , Benzene Derivatives , Bismuth , Clarithromycin , Drug Interactions , Adult , Female , Humans , Male , Young Adult , Amoxicillin/adverse effects , Amoxicillin/pharmacokinetics , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Bismuth/adverse effects , Bismuth/pharmacokinetics , China , Clarithromycin/adverse effects , Clarithromycin/pharmacokinetics , East Asian People , Healthy Volunteers , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacokinetics , Imidazoles/adverse effects , Imidazoles/pharmacokinetics , Benzene Derivatives/adverse effects , Benzene Derivatives/pharmacokinetics
14.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38636190

ABSTRACT

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Subject(s)
Herb-Drug Interactions , Intestinal Absorption , Intestinal Mucosa , Levofloxacin , Rats, Sprague-Dawley , Animals , Levofloxacin/pharmacology , Levofloxacin/pharmacokinetics , Intestinal Absorption/drug effects , Rats , Male , Intestinal Mucosa/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacokinetics
15.
Antimicrob Agents Chemother ; 68(5): e0018224, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597672

ABSTRACT

Cephalexin, a first-generation cephalosporin, is the first-line oral therapy for children with musculoskeletal infections due to methicillin-susceptible Staphylococcus aureus (MSSA). Cefadroxil, a similar first-generation cephalosporin, is an attractive alternative to cephalexin given its longer half-life. In this study, we describe the comparative pharmacokinetics (PK) and pharmacodynamics (PD) of cephalexin and cefadroxil in children with musculoskeletal infections. Children aged 6 months to 18 years with a musculoskeletal infection were enrolled in a prospective, open-label, crossover PK study and given single oral doses of cefadroxil (50-75 mg/kg up to 2,000 mg) and cephalexin (50 mg/kg up to 1,375 mg). Population PK models were developed and used for dosing simulations. Our primary PD target was the achievement of free antibiotic concentrations above the minimum inhibitory concentration (fT >MIC) for 40% of the day for MICs ≤ 4 mg/L. PK of cephalexin (n = 15) and cefadroxil (n = 14) were best described using a one-compartment, first-order absorption model, with a lag time component for cefadroxil. PK parameters were notable for cefadroxil's longer half-life (1.61 h) than cephalexin's (1.10 h). For pediatric weight bands, our primary PD target was achieved by cephalexin 25 mg/kg/dose, maximum 750 mg/dose, administered three times daily and cefadroxil 40 mg/kg/dose, maximum 1,500 mg/dose, administered twice daily. More aggressive dosing was required to achieve higher PD targets. Among children with musculoskeletal infections, oral cephalexin and cefadroxil achieved PD targets for efficacy against MSSA. Given less frequent dosing, twice-daily cefadroxil should be further considered as an alternative to cephalexin for oral step-down therapy for serious infections due to MSSA.


Subject(s)
Anti-Bacterial Agents , Cefadroxil , Cephalexin , Cross-Over Studies , Microbial Sensitivity Tests , Cephalexin/pharmacokinetics , Cephalexin/therapeutic use , Humans , Child , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Cefadroxil/pharmacokinetics , Cefadroxil/therapeutic use , Female , Male , Child, Preschool , Adolescent , Infant , Prospective Studies , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects
16.
BMC Vet Res ; 20(1): 147, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643185

ABSTRACT

BACKGROUND: Gamithromycin is an effective therapy for bovine and swine respiratory diseases but not utilized for rabbits. Given its potent activity against respiratory pathogens, we sought to determine the pharmacokinetic profiles, antimicrobial activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with therapeutic effect of gamithromycin against Pasteurella multocida in rabbits. RESULTS: Gamithromycin showed favorable PK properties in rabbits, including high subcutaneous bioavailability (86.7 ± 10.7%) and low plasma protein binding (18.5-31.9%). PK analysis identified a mean plasma peak concentration (Cmax) of 1.64 ± 0.86 mg/L and terminal half-life (T1/2) of 31.5 ± 5.74 h after subcutaneous injection. For P. multocida, short post-antibiotic effects (PAE) (1.1-5.3 h) and post-antibiotic sub-inhibitory concentration effects (PA-SME) (6.6-9.1 h) were observed after exposure to gamithromycin at 1 to 4× minimal inhibitory concentration (MIC). Gamithromycin demonstrated concentration-dependent bactericidal activity and the PK/PD index area under the concentration-time curve over 24 h (AUC24h)/MIC correlated well with efficacy (R2 > 0.99). The plasma AUC24h/MIC ratios of gamithromycin associated with the bacteriostatic, bactericidal and bacterial eradication against P. multocida were 15.4, 24.9 and 27.8 h in rabbits, respectively. CONCLUSIONS: Subcutaneous administration of 6 mg/kg gamithromycin reached therapeutic concentrations in rabbit plasma against P. multocida. The PK/PD ratios determined herein in combination with ex vivo activity and favorable rabbit PK indicate that gamithromycin may be used for the treatment of rabbit pasteurellosis.


Subject(s)
Cattle Diseases , Lagomorpha , Pasteurella Infections , Pasteurella multocida , Swine Diseases , Rabbits , Animals , Cattle , Swine , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Pasteurella Infections/drug therapy , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Macrolides/therapeutic use , Macrolides/pharmacokinetics , Microbial Sensitivity Tests/veterinary , Cattle Diseases/drug therapy , Swine Diseases/drug therapy
17.
J Antimicrob Chemother ; 79(5): 1187-1190, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569058

ABSTRACT

BACKGROUND: When performing therapeutic drug monitoring (TDM) for flucloxacillin, it is advised to measure the unbound, not the total, flucloxacillin concentration. To be able to accurately quantify unbound flucloxacillin concentrations, a reliable analytical method is indispensable. OBJECTIVE: To determine the influence of temperature and pH of the sample during ultrafiltration on the measured unbound fraction of flucloxacillin. MATERIALS AND METHODS: We performed three different experiments. In a single laboratory experiment, we investigated the influence of ultrafiltration temperature (10°C, room temperature and 37°C) on the measured unbound fraction of flucloxacillin for three concentration levels. In a multiple laboratory experiment, the results of eight laboratories participating in an international quality control programme measuring unbound flucloxacillin concentrations were analysed. In the third experiment, patient samples were ultrafiltrated using four different conditions: (i) physiological pH and room temperature; (ii) unadjusted pH (pH 9 after freezing) and room temperature; (iii) physiological pH and 37°C and (iv) unadjusted pH and 37°C. RESULTS: For all experiments, measurement of samples that were ultrafiltrated at room temperature resulted in a substantially lower unbound fraction compared to samples that were ultrafiltrated at 37°C. Adjusting the pH to physiological pH only had a minimal impact on the measured unbound fraction. CONCLUSIONS: On the basis of these findings and considering the need for fast, simple and reproducible sample pretreatment for TDM purposes, we conclude that ultrafiltration of flucloxacillin should be performed at physiological temperature (37°C), but adjustment of pH does not seem to be necessary.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Floxacillin , Temperature , Ultrafiltration , Floxacillin/pharmacokinetics , Ultrafiltration/methods , Humans , Anti-Bacterial Agents/pharmacokinetics , Drug Monitoring/methods , Hydrogen-Ion Concentration
18.
Antimicrob Agents Chemother ; 68(5): e0159123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38578080

ABSTRACT

We recruited 48 neonates (50 vancomycin treatment episodes) in a prospective study to validate a model-informed precision dosing (MIPD) software. The initial vancomycin dose was based on a population pharmacokinetic model and adjusted every 36-48 h. Compared with a historical control group of 53 neonates (65 episodes), the achievement of a target trough concentration of 10-15 mg/L improved from 37% in the study to 62% in the MIPD group (P = 0.01), with no difference in side effects.


Subject(s)
Anti-Bacterial Agents , Vancomycin , Vancomycin/pharmacokinetics , Vancomycin/administration & dosage , Vancomycin/therapeutic use , Humans , Infant, Newborn , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Male , Female , Software
19.
J Med Chem ; 67(8): 6585-6609, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38598362

ABSTRACT

G0775, an arylomycin-type SPase I inhibitor that is being evaluated in a preclinical study, exhibited potent antibacterial activities against some Gram-negative bacteria but meanwhile suffered defects such as a narrow antibacterial spectrum and poor pharmacokinetic properties. Herein, systematic structural modifications were carried out, including optimization of the macrocyclic skeleton, warheads, and lipophilic regions. The optimization culminated in the discovery of 138f, which showed more potent activity and a broader spectrum against clinically isolated carbapenem-resistant Gram-negative bacteria, especially against Acinetobacter baumannii and Pseudomonas aeruginosa. 162, the free amine of 138f, exhibited an excellent pharmacokinetic profile in rats. In a neutropenic mouse thigh model of infection with multidrug-resistant P. aeruginosa, the potent in vivo antibacterial efficacy of 162 was confirmed and superior to that of G0775 (3.5-log decrease vs 1.1-log decrease in colony-forming unit (CFU)). These results support 162 as a potential antimicrobial agent for further research.


Subject(s)
Anti-Bacterial Agents , Drug Design , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Animals , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Mice , Structure-Activity Relationship , Pseudomonas aeruginosa/drug effects , Rats , Acinetobacter baumannii/drug effects , Male
20.
Antimicrob Agents Chemother ; 68(5): e0141523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501807

ABSTRACT

Daptomycin is a concentration-dependent lipopeptide antibiotic for which exposure/effect relationships have been shown. Machine learning (ML) algorithms, developed to predict the individual exposure to drugs, have shown very good performances in comparison to maximum a posteriori Bayesian estimation (MAP-BE). The aim of this work was to predict the area under the blood concentration curve (AUC) of daptomycin from two samples and a few covariates using XGBoost ML algorithm trained on Monte Carlo simulations. Five thousand one hundred fifty patients were simulated from two literature population pharmacokinetics models. Data from the first model were split into a training set (75%) and a testing set (25%). Four ML algorithms were built to learn AUC based on daptomycin blood concentration samples at pre-dose and 1 h post-dose. The XGBoost model (best ML algorithm) with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment was evaluated in both the test set and the simulations from the second population pharmacokinetic model (validation). The ML model based on the two concentrations, the differences between these concentrations, and five other covariates (sex, weight, daptomycin dose, creatinine clearance, and body temperature) yielded very good AUC estimation in the test (relative bias/RMSE = 0.43/7.69%) and validation sets (relative bias/RMSE = 4.61/6.63%). The XGBoost ML model developed allowed accurate estimation of daptomycin AUC using C0, C1h, and a few covariates and could be used for exposure estimation and dose adjustment. This ML approach can facilitate the conduct of future therapeutic drug monitoring (TDM) studies.


Subject(s)
Anti-Bacterial Agents , Area Under Curve , Bayes Theorem , Daptomycin , Machine Learning , Monte Carlo Method , Daptomycin/pharmacokinetics , Daptomycin/blood , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/blood , Male , Female , Algorithms , Middle Aged , Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...