Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.292
Filter
1.
Ecotoxicol Environ Saf ; 277: 116383, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663192

ABSTRACT

Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.


Subject(s)
Escherichia coli , Oxidative Stress , Vanillic Acid , Vanillic Acid/pharmacology , Vanillic Acid/toxicity , Escherichia coli/drug effects , Oxidative Stress/drug effects , Environmental Pollutants/toxicity , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests , Mutagenicity Tests , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/toxicity , Anti-Infective Agents/pharmacology
2.
Toxicol Ind Health ; 40(5): 254-271, 2024 May.
Article in English | MEDLINE | ID: mdl-38518096

ABSTRACT

Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 µg L-1) and sublethal (176.7 µg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.


Subject(s)
Anti-Infective Agents , Triclosan , Male , Female , Animals , Triclosan/toxicity , Ecosystem , Fishes , Anti-Infective Agents/toxicity , Fresh Water
3.
Braz J Biol ; 84: e278004, 2024.
Article in English | MEDLINE | ID: mdl-38511776

ABSTRACT

In this study, our objective was to conduct a comprehensive phytochemical analysis, determine toxicity levels, and assess the antioxidant and antimicrobial properties of extracts derived from the leaves of Dipteryx alata Vogel, a native species of the Brazilian cerrado flora. Three distinct extracts were prepared utilizing assisted ultrasound and the Soxhlet apparatus, namely, Ultrasound Crude Extract (UCE), Soxhlet Crude Extract (SCE), and the Soxhlet Ethanol Extract (SEE). The phytochemical analysis revealed the presence of flavonoids, tannins, phytosterols, and saponins in all extracts. Additionally, alkaloids were specifically identified in the SCE and SEE extracts. In the analysis using LC-DAD, the compounds gallic acid, rutin, quercetin, luteolin and kampefrol were determined in higher concentrations in the SCE, followed by the SEE and UCE, respectively. The GC-MS analysis revealed the presence of campesterol, stigmasterol and ß-sitosterol in all extracts, with UCE and SCE showing a higher concentration of ß-sitosterol. SCE showed the highest concentration of all identified compounds. In the analysis of antioxidant activity by DPPH• and ABTS•+, SEE showed greater efficiency (IC50 = 2.98 ± 2.92 and 6.57 ± 0.89 µg/mL, respectively). In the toxicity test with Allium cepa, all extracts stimulated root growth at 50 g/mL; UCE and SEE stimulated root growth at 250 g/mL; and SEE inhibited root growth at 750 g/mL. In the Artemia salina toxicity, all extracts were non-toxic. Antibacterial activity was identified in the microorganisms S. aureus and S. mutans; however, the extracts did not show antifungal action against the strain of C. albicans. The extracts of D. alata have therapeutic potential for applicability in dentistry.


Subject(s)
Anti-Infective Agents , Dipteryx , Antioxidants/chemistry , Plant Extracts/chemistry , Staphylococcus aureus , Phytochemicals/analysis , Anti-Infective Agents/toxicity , Ethanol
4.
PLoS One ; 19(2): e0299075, 2024.
Article in English | MEDLINE | ID: mdl-38422004

ABSTRACT

A genetic predisposition to central nervous system (CNS) toxicity induced by antimicrobial drugs (antibiotics, antivirals, antifungals, and antiparasitic drugs) has been suspected. Whole genome sequencing of 66 cases and 833 controls was performed to investigate whether antimicrobial drug-induced CNS toxicity was associated with genetic variation. The primary objective was to test whether antimicrobial-induced CNS toxicity was associated with seventeen efflux transporters at the blood-brain barrier. In this study, variants or structural elements in efflux transporters were not significantly associated with CNS toxicity. Secondary objectives were to test whether antimicrobial-induced CNS toxicity was associated with genes over the whole genome, with HLA, or with structural genetic variation. Uncommon variants in and close to three genes were significantly associated with CNS toxicity according to a sequence kernel association test combined with an optimal unified test (SKAT-O). These genes were LCP1 (q = 0.013), RETSAT (q = 0.013) and SFMBT2 (q = 0.035). Two variants were driving the LCP1 association: rs6561297 (p = 1.15x10-6, OR: 4.60 [95% CI: 2.51-8.46]) and the regulatory variant rs10492451 (p = 1.15x10-6, OR: 4.60 [95% CI: 2.51-8.46]). No common genetic variant, HLA-type or structural variation was associated with CNS toxicity. In conclusion, CNS toxicity due to antimicrobial drugs was associated with uncommon variants in LCP1, RETSAT and SFMBT2.


Subject(s)
Anti-Infective Agents , Case-Control Studies , Anti-Infective Agents/toxicity , Central Nervous System , Anti-Bacterial Agents , Antifungal Agents , Membrane Transport Proteins
5.
Sci Total Environ ; 922: 171214, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408672

ABSTRACT

In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 µg·kg-1 - 10 µg·kg-1) were obtained, with the exception of norfloxacin (34 µg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.


Subject(s)
Anti-Infective Agents , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Tandem Mass Spectrometry , Soil Pollutants/analysis , Anti-Infective Agents/toxicity , Anti-Infective Agents/metabolism , Sulfamethazine/analysis , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Tetracycline/analysis
6.
Vet Dermatol ; 35(3): 325-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38169122

ABSTRACT

BACKGROUND: Norway spruce (Picea abies) resin-based products are used in human medicine. A resin-based otic rinse also could be useful in supportive care of canine otitis externa (COE), yet information on its antimicrobial effect against canine pathogens or ototoxicity is lacking. OBJECTIVES: To investigate the antimicrobial properties and ototoxicity of a commercial resin-based otic product. MATERIALS AND METHODS: Antimicrobial effect was evaluated using a standardised challenge test on Staphylococcus pseudintermedius, Corynebacterium auriscanis, Pseudomonas aeruginosa, Escherichia coli, Malassezia pachydermatis, and Streptococcus halichoeri strains to measure reduction in growth after 24 h exposure to the product. Effect on cell morphology was investigated by exposing S. pseudintermedius, C. auriscanis, P. aeruginosa and M. pachydermatis to the product in 20% and 100% (v/v) concentrations for 6, 24 and 48 h, and evaluating cells by transmission (TEM) and scanning (SEM) electron microscopy. An in vitro microbial kill-rate assay also was performed. Auditory brain stem response test, clinical evaluation and postmortem histological evaluation of ear canals were undertaken on experimental guinea pigs treated with the test product or saline controls. RESULTS: The product showed >log 5 growth reduction for all strains in the challenge test. TEM and SEM images showed clear changes in the cells' inner structures and deterioration of cells, and 100% (v/v) test product exposure induced microbial killing in 1-2 h. Ototoxicity was not detected in guinea pigs. CONCLUSIONS AND CLINICAL RELEVANCE: The product may be an option in supportive care of COE because of antimicrobial effects and lack of ototoxic properties in a guinea pig model.


Subject(s)
Dog Diseases , Picea , Animals , Dogs , Pilot Projects , Dog Diseases/drug therapy , Otitis Externa/veterinary , Otitis Externa/drug therapy , Pseudomonas aeruginosa/drug effects , Corynebacterium/drug effects , Escherichia coli/drug effects , Malassezia/drug effects , Staphylococcus/drug effects , Ototoxicity , Guinea Pigs , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Male , Microbial Sensitivity Tests , Female
7.
Langmuir ; 40(4): 2242-2253, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38221732

ABSTRACT

Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.


Subject(s)
Anti-Infective Agents , DNA , Transfection , DNA/chemistry , Hydrocarbons , Surface-Active Agents/toxicity , Surface-Active Agents/chemistry , Anti-Infective Agents/toxicity
8.
Food Chem Toxicol ; 183: 114241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013001

ABSTRACT

Microbial food spoilage caused by food-borne bacteria, molds, and associated toxic chemicals significantly alters the nutritional quality of food products and makes them unpalatable to the consumer. In view of potential adverse effects (resistance development, residual toxicity, and negative effects on consumer health) of some of the currently used preservative agents and consumer preferences towards safe, minimally processed, and chemical-free products, food industries are looking for natural alternatives to the chemical preservatives. In this context, essential oils (EOs) showed broad-range antimicrobial effectiveness, low toxicity, and diverse mechanisms of action, and could be considered promising natural plant-based antimicrobials. The existing technical barriers related to the screening of plants, extraction methods, characterization, dose optimization, and unpredicted mechanism of toxicity in the food system, could be overcome using recent scientific and technological advancements, especially bioinformatics, nanotechnology, and mathematical approaches. The review focused on the potential antimicrobial efficacy of EOs against food-borne microbes and the role of recent scientific technology and social networking platform in addressing the major obstacles with EOs-based antimicrobial agents. In addition, a detailed mechanistic understanding of the antimicrobial efficacy of EOs, safety profile, and risk assessment using bioinformatics approaches are summarized to explore their potential application as food preservatives.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Oils, Volatile/toxicity , Oils, Volatile/chemistry , Food Microbiology , Food Preservatives/toxicity , Food Preservatives/chemistry , Anti-Infective Agents/toxicity , Bacteria
9.
Environ Res ; 244: 117888, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38097060

ABSTRACT

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Subject(s)
Anti-Infective Agents , Food Packaging , Food Loss and Waste , Carbon , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/toxicity
10.
ACS Infect Dis ; 9(12): 2632-2651, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38014670

ABSTRACT

Antimicrobial peptides (AMPs) are promising candidates to combat pathogens that are resistant to conventional antimicrobial drugs because they operate through mechanisms that involve membrane disruption. However, the use of AMPs in clinical settings has been limited, at least in part, by their susceptibility to proteolytic degradation and their lack of selectivity toward pathogenic microbes vs mammalian cells. We recently reported on the design of α- and ß-peptide oligomers structurally templated upon the naturally occurring α-helical AMP aurein 1.2. These α/ß-peptide oligomers are more proteolytically stable than aurein 1.2 and have several other attributes that render them attractive as alternatives to conventional AMPs. This study describes the influence of peptide physicochemical properties on the broad-spectrum activity of aurein 1.2-based α/ß-peptide mimics against nine bacterial, fungal, and mammalian cell lines. We used a partial least-squares regression (PLSR)-supervised machine learning model to quantify and visualize relationships between experimentally determined physicochemical properties (e.g., hydrophobicity, charge, and helicity) and experimentally measured cell-type-specific activities of 21 peptides in a 149-member α/ß-peptide library. Using this approach, we identified several peptides that were predicted to exhibit enhanced broad-spectrum selectivity, a measure that evaluates antimicrobial activity relative to mammalian cell toxicity compared to aurein 1.2. Experimental validation demonstrated high model predictive performance, and characterization of compounds with the highest broad-spectrum selectivity revealed peptide hydrophobicity, helicity, and helical rigidity to be strong predictors of broad-spectrum selectivity. The most selective peptide identified from the model prediction has more than a 13-fold improvement in broad-spectrum selectivity than that of aurein 1.2, demonstrating the ability of using PLSR models to identify quantitative structure-function relationships for nonstandard amino acid-containing peptides. Overall, this work establishes quantifiable guidelines for the rational design of helical antimicrobial α/ß-peptides and identifies promising new α/ß-peptides with significantly reduced mammalian toxicities and improved antifungal and antibacterial activities relative to aurein 1.2.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Animals , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Bacteria , Mammals
11.
Planta ; 258(2): 33, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378716

ABSTRACT

MAIN CONCLUSION: The physiological and transcriptome analysis revealed that auxin was a positive regulator of lateral root development and tanshinone accumulation in Salvia miltiorrhiza. Roots of S. miltiorrhiza are widely used as medicinal materials in China, and the root morphology and content of bioactive compounds [such as phenolic acids and diterpenoid quinones (tanshinones)] are the main factors to determine the quality of this herb. Auxin regulates root development and secondary metabolism in many plant species, but little is known about its function in S. miltiorrhiza. In this study, S. miltiorrhiza seedlings were treated (exogenous application) with the auxin indole-3-acetic acid (IAA) and the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to investigate the regulatory roles of auxin in S. miltiorrhiza. The results indicated that exogenous IAA promoted both lateral root development and tanshinones biosynthesis in S. miltiorrhiza. The NPA application suppressed the lateral root development but showed no obvious effects on tanshinones accumulation. Based on the RNA-seq analysis, expressions of genes related to auxin biosynthesis and signaling transduction were altered in both treated groups. Coincidental with the enhanced content of tanshinones, transcripts of several key enzyme genes in the tanshinones biosynthetic pathway were stimulated after the exogenous IAA application. The expression profiles of seven common transcription factor domain-containing gene families were analyzed, and the results implied that some AP2/ERF genes were probably responsible for the auxin-induced lateral root development in S. miltiorrhiza. These findings shed new light on the regulatory roles of auxin on root development and bioactive compounds biosynthesis in S. miltiorrhiza, and lay the groundwork for future research into the detailed molecular mechanism underlying these biological functions.


Subject(s)
Anti-Infective Agents , Salvia miltiorrhiza , Abietanes , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Transcriptome , Anti-Infective Agents/toxicity
12.
Mutagenesis ; 38(3): 169-181, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37228020

ABSTRACT

Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were applied as reducing and stabilizing agents to prepare colloidal 20-25 nm silver nanoparticles (Ag NPs). The Ag NPs were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The cytotoxic actions of coated Ag NPs, and their inorganic and organic components, were examined against trophoblast cells and human peripheral blood lymphocytes (PBLs), Gram-positive, Gram-negative bacteria, and yeast. The genotoxic potential was evaluated in PBLs in vitro with the comet assay. Ag/DOLE and Ag/OLE induced cytotoxic effects in both types of cells after 24 h exposure when silver concentrations were 0.025-0.2 mM. However, the most pronounced cytotoxicity exhibits Ag/OLE. Both colloids also caused reduced ROS production in both cell types at 0.1 mM and 0.2 mM, while bare Ag NPs did not alter ROS levels at any of the conditions. Functionalized Ag/DOLE and Ag/OLE did not show genotoxic effects in PBLs, while bare AgNPs increased DNA damage significantly only at 0.2 mM. Regarding the antimicrobial effects, the Ag/OLE had MIC values for all evaluated microorganisms from 0.0625 to less than 0.0312 mM. Also, the antimicrobial effect of Ag/DOLE was significantly higher on Gram-negative bacteria and yeast than on Gram-positive bacteria. Obtained results indicate that Ag/OLE induced the most pronounced biological effects, beneficial for its application as an antimicrobial agent, but with potential risks from exposure to high concentrations that could induce cytotoxicity in healthy human cells.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Humans , Silver/toxicity , Reactive Oxygen Species/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Saccharomyces cerevisiae/metabolism , Trophoblasts/metabolism , Anti-Infective Agents/toxicity , Anti-Infective Agents/chemistry , Lymphocytes/metabolism
13.
Lett Appl Microbiol ; 76(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37158292

ABSTRACT

In this research paper, the total phenols (TP), flavonoids (TF), and tannins (TT) content in the acetone and ethyl acetate extracts of Najas marina L. and the identification and quantification of phenolic acids and flavonoids from the ethyl acetate extract were performed. Antioxidant, antimicrobial, and antibiofilm properties of the mentioned extracts were investigated in vitro. The genotoxic potential was analyzed in cultured human peripheral blood lymphocytes (PBL). The TP and TF content was higher in the ethyl acetate extract, dominated by quercetin (172.4 µg mg-1) and ferulic acid (22.74 µg mg-1), while the TT content was slightly higher in the acetone extract. Both extracts tested showed limited antioxidant effects compared to ascorbic acid. The strongest antibacterial activity was observed with Gram-positive bacteria, particularly Staphylococcus aureus (MIC and MMC at 0.31 mg ml-1) and S. aureus ATCC 25923 (MIC at <0.02 mg ml-1), while antifungal activity was limited. Both extracts tested showed better activity on preformed biofilms. Acetone extract had no genotoxic activity but showed significant genoprotective activity against mitomycin C-induced DNA damage in cultured PBLs. Results of our research demonstrate the potential for the development of plant-based antibacterial and biofilm agents.


Subject(s)
Anti-Infective Agents , Antioxidants , Humans , Antioxidants/pharmacology , Acetone , Staphylococcus aureus , Plant Extracts/pharmacology , Anti-Infective Agents/toxicity , Anti-Bacterial Agents/pharmacology , Biofilms , Flavonoids/pharmacology , Microbial Sensitivity Tests
14.
Toxicology ; 490: 153510, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37059348

ABSTRACT

Despite the large number of odoriferous compounds available, new ones with interesting olfactory characteristics are desired due to their potentially high commercial value. Here, we report for the first time mutagenic, genotoxic, and cytotoxic effects, and antimicrobial properties of low-molecular fragrant oxime ethers, and we compare their properties with corresponding oximes and carbonyl compounds. 24 aldehydes, ketones, oximes, and oxime ethers were evaluated for mutagenic and cytotoxic effects in Ames (using Salmonella typhimurium strains TA 98 with genotype hisD3052, rfa, uvrB, pKM101, and TA100 with genotype hisG46, rfa, uvrB, pKM101, concentration range: 0.0781-40 mg/mL) and MTS (using HEK293T cell line concentration of tested substances: 0.025 mM) assays. Antimicrobial evaluation was carried out against Bacillus cereus (ATCC 10876), Staphylococcus aureus (ATCC 6538), Enterococcus hirae (ATCC 10541), Pseudomonas aeruginosa (ATCC 15442), Escherichia coli (ATCC 10536), Legionella pneumophila (ATCC 33152); Candida albicans (ATCC 10231) and Aspergillus brasiliensis (ATCC 16404) with concentration range of tested substances 9.375 - 2.400 mg/mL. Furthermore, 5 representatives of carbonyl compounds, oximes, and an oxime ether (stemone, buccoxime, citral, citral oxime, and propiophenone oxime O-ethyl ether) were evaluated for genotoxic properties in SOS-Chromotest (concentration range: 7.8·10-5 - 5·10-3 mg/mL). All of the tested compounds did not exhibit mutagenic, genotoxic, or cytotoxic effects. Oximes and oxime ethers showed relevant antimicrobial activity against pathogenic species (P. aeruginosa, S. aureus, E.coli, L. pneumophila, A. brasiliensis, C. albicans) in the MIC range 0.075 - 2.400 mg/mL compared to the common preservative methylparaben with the MIC range 0.400-3.600 mg/mL. Our study shows that oxime ethers have the potential to be used as fragrant agents in functional products.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Humans , Ethers/toxicity , Mutagens , Oximes/toxicity , Ketones/pharmacology , Aldehydes/toxicity , Odorants , Staphylococcus aureus , HEK293 Cells , Microbial Sensitivity Tests , Anti-Infective Agents/toxicity , DNA Damage
15.
J Hazard Mater ; 451: 131162, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36907059

ABSTRACT

Much attention has been given to the safety and quality of aquatic products, including consuming Chinese mitten crab (Eriocheir sinensis), which offers both nutritional benefits and toxicological risks. Eighteen sulfonamides, 9 quinolones and 37 fatty acids were analyzed in 92 crab samples from primary aquaculture provinces in China. Enrofloxacin and ciprofloxacin have been mentioned as typical antimicrobials occurring at the greatest concentrations (>100 µg/kg, wm). By use of an in vitro method, the proportions of enrofloxacin, ciprofloxacin and essential fatty acids (EFAs, DHA and EPA) in ingested nutrients were determined to be 12 %, none and 95 %, respectively. The risk-benefit quotient (HQ) between the adverse effects of antimicrobials and nutritional benefits of EFAs in crabs found that HQs based on data after digestion were significantly less (HQ = 0.0086) than that of the control group where no digestion occurred (HQ = 0.055). This result suggested that (1) there was less risk posed by antimicrobials due to the consumption of crab, and (2) ignoring the bioaccessible fraction of antimicrobials in crabs might overestimate risks to the health of humans due to dietary exposure. Meaning bioaccessibility can improve the accuracy of the risk assessment process. Realistic risk evaluation should be recommended to achieve a quantified assessment of the dietary risks and benefits of aquatic products.


Subject(s)
Anti-Infective Agents , Brachyura , Humans , Animals , Enrofloxacin , Diet , Fatty Acids, Essential , Anti-Infective Agents/toxicity , Ciprofloxacin/toxicity , China
16.
Environ Toxicol ; 38(7): 1577-1588, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36988223

ABSTRACT

Inside the biological milieu, nanoparticles with photocatalytic activity have potential to trigger cell death non-specifically due to production of reactive oxygen species (ROS) upon reacting with biological entities. Silver nanoparticle (AgNP) possessing narrow band gap energy can exhibit high light absorption property and significant photocatalytic activity. This study intends to explore the effects of ROS generated due to photocatalytic activity of AgNP on antimicrobial and cytotoxic propensities. To this end, AgNP was synthesized using the principle of green chemistry from the peel extract of Punica granatum L., and was characterized using UV-Vis spectroscope, transmission electron microscope and x-ray diffraction, and so forth. The antimicrobial activity of AgNP against studied bacteria indicated that, ROS generated at AgNP interface develop stress on bacterial membrane leading to bacterial cell death, whereas Alamar Blue dye reduction assay indicated that increased cytotoxic activity with increasing concentrations of AgNP. The γH2AX activity assay revealed that increasing the concentrations of AgNP increased DNA damaging activity. The results altogether demonstrated that both antimicrobial and cytotoxic propensities are triggered primarily due interfacial ROS generation by photocatalytic AgNP, which caused membrane deformation in bacteria and DNA damage in HT1080 cells resulting in cell death.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Metal Nanoparticles , Reactive Oxygen Species/metabolism , Silver/toxicity , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Anti-Infective Agents/toxicity , Oxidative Stress , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents/toxicity
17.
J Trace Elem Med Biol ; 77: 127129, 2023 May.
Article in English | MEDLINE | ID: mdl-36630761

ABSTRACT

BACKGROUND: Thimerosal (Merthiolate) is a well-known preservative used in pharmaceutical products, the safety of which was a matter of controversy for decades. Thimerosal is a mercury compound, and there is a debate as to whether Thimerosal exposure from vaccination can contribute to the incidence of mercury-driven disorders. To date, there is no consensus on Thimerosal safety in Vaccines. In 1977, a maximum safe dose of 200 µg/ml (0.5 mM) was recommended for Thimerosal by the WHO experts committee on biological standardization. Up-to-date guidelines, however, urge national control authorities to establish their own standards for the concentration of vaccine preservatives. We believe such safety limits must be studied at the cellular level first. The present study seeks a safe yet efficient dose of Thimerosal exposure for human and animal cells and control microorganism strains. METHODS: The safety of Thimerosal exposure on cells was analyzed through an MTT cell toxicity assay. The viability of four cell types, including HepG2, C2C12, Vero Cells, and Peripheral blood mononuclear cells (PBMCs), was examined in the presence of different Thimerosal concentrations and the maximum tolerable dose (MTD) and the half maximal inhibitory concentration (IC50) values for each cell line were determined. The antimicrobial effectiveness of Thimerosal was evaluated on four control strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Aspergillus brasiliensis, to obtain the minimum inhibitory concentration (MIC) of Thimerosal. The MIC test was performed in culture media and under optimal growth conditions of microorganisms in the presence of different Thimerosal concentrations. RESULTS: The viability of all examined cell lines was suppressed entirely in the presence of 4.6 µg/ml (12.5 µM) of Thimerosal. The MTD for HepG2, C2C12, PBMC, and Vero cells was 2, 1.6, 1, and 0.29 µg/ml (5.5, 4.3, 2.7 and 0.8 µM), respectively. The IC50 of Thimerosal exposure for HepG2, C2C12, PBMC, and Vero cells was 2.62, 3.17, 1.27, and 0.86 µg/ml (7.1, 8.5, 3.5 and 2.4 µM), respectively. As for antimicrobial effectiveness, the growth capability of Candida albicans and Staphylococcus aureus was suppressed entirely in the presence of 6.25 µg/ml (17 µM) Thimerosal. The complete growth inhibition of Pseudomonas aeruginosa in culture media was achieved in 100 µg/ml (250 µM) Thimerosal concentration. This value was 12.5 µg/ml (30 µM) for Aspergillus brasiliensis. CONCLUSION: According to our results Thimerosal should be present in culture media at 100 µg/ml (250 µM) concentration to achieve an effective antimicrobial activity. We showed that this amount of Thimerosal is toxic for human and animal cells in vitro since the viability of all examined cell lines was suppressed in the presence of less than 5 µg/ml (12.5 µM) of Thimerosal. Overall, our study revealed Thimerosal was 333-fold more cytotoxic to human and animal cells as compared to bacterial and fungal cells. Our results promote more study on Thimerosal toxicity and its antimicrobial effectiveness to obtain more safe concentrations in biopharmaceuticals.


Subject(s)
Anti-Infective Agents , Mercury , Thimerosal , Vaccines , Animals , Humans , Anti-Infective Agents/toxicity , Chlorocebus aethiops , Leukocytes, Mononuclear , Mercury/toxicity , Preservatives, Pharmaceutical/toxicity , Thimerosal/toxicity , Vero Cells
18.
Appl Microbiol Biotechnol ; 107(4): 1039-1061, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36635395

ABSTRACT

Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Antioxidants/pharmacology , Copper/toxicity , Copper/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Anti-Infective Agents/toxicity , Anti-Bacterial Agents , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
19.
Probiotics Antimicrob Proteins ; 15(2): 287-299, 2023 04.
Article in English | MEDLINE | ID: mdl-34420188

ABSTRACT

Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 °C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 µg/mL for all Pectobacterium strains, respectively; MIC of 1.48 µg/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 µg/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.


Subject(s)
Anti-Infective Agents , Portulaca , Humans , Animals , Mice , Lectins , Anti-Infective Agents/toxicity , Anti-Infective Agents/analysis , Anti-Bacterial Agents/toxicity , Plant Leaves/chemistry , Microbial Sensitivity Tests , Antifungal Agents/pharmacology
20.
J Biochem Mol Toxicol ; 37(2): e23244, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36353933

ABSTRACT

Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.


Subject(s)
Anti-Infective Agents , Environmental Pollutants , Triclosan , Water Pollutants, Chemical , Humans , Triclosan/toxicity , Anti-Infective Agents/toxicity , Environmental Pollutants/pharmacology , Hazardous Substances/pharmacology , Apoptosis , Water Pollutants, Chemical/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...