Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.710
Filter
1.
PLoS One ; 19(5): e0302015, 2024.
Article in English | MEDLINE | ID: mdl-38728332

ABSTRACT

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Subject(s)
Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
Pak J Pharm Sci ; 37(2): 315-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767098

ABSTRACT

The present study was designed to assess Tradescantia spathacea's antidiabetic ability, as well as the antiulcer activity of the entire plant extract. The diabetic condition was evaluated using Streptozotocin's oral glucose tolerance test, diabetes-alloxan and diabetes-models. Antiulcer activities were observed in rats where gastric ulcers were either caused by oral administration of ethanol, or pyloric ligation. Standards include ranitidine, glibenclamide and sucralfate. In all models, the blood glucose levels of animals treated with the test extract were found to be significantly lower compared to diabetic care. Similarly, in all models, the ulcer index in the animals treated with the test extract was found to be significantly lower relative to the animals under vehicle supervision. Our findings say T. Spathacea extract has essential anti-diabetic properties, as well as antiulcer properties.


Subject(s)
Anti-Ulcer Agents , Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/isolation & purification , Diabetes Mellitus, Experimental/drug therapy , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/chemically induced , Male , Rats , Blood Glucose/drug effects , Blood Glucose/metabolism , Methanol/chemistry , Glucose Tolerance Test , Solvents/chemistry , Phytotherapy
3.
Georgian Med News ; (348): 151-153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807409

ABSTRACT

Rebamipide contributes to the improvement of blood supply of the GI mucosa, activates its barrier function, activates alkaline secretion of the stomach, increases proliferation and metabolism of epithelial cells of the GI tract, cleanses the mucosa from hydroxyl radicals and suppresses superoxides, produced by polymorphonuclear leukocytes and neutrophils in the presence of Helicobacter pylori, protects the GI mucosa from bacterial invasion and the damaging effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the mucosa. Rebamipide, originally developed as a treatment for gastric ulcers, has attracted the attention of researchers as a potential drug for the treatment of UC due to its ability to stimulate mucus production, reduce oxidative stress, and decrease inflammation. Due to the presence of these properties, it is hypothesized that rebamipide may have a protective effect on the intestinal mucosa during prolonged inflammation, making it a promising candidate for inclusion in therapeutic strategies for ulcerative colitis. The results of this study suggest that rebamipide holds potential therapeutic benefits for the treatment of ulcerative colitis.


Subject(s)
Alanine , Colitis, Ulcerative , Quinolones , Quinolones/therapeutic use , Quinolones/pharmacology , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/pharmacology , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Rats , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Male , Disease Progression , Disease Models, Animal , Rats, Wistar
4.
Eur J Med Chem ; 272: 116436, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704935

ABSTRACT

Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.


Subject(s)
Peptic Ulcer , Phytotherapy , Humans , Peptic Ulcer/drug therapy , Chemistry, Pharmaceutical , Anti-Ulcer Agents/chemistry , Anti-Ulcer Agents/pharmacology , Animals
5.
Nutrients ; 16(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794668

ABSTRACT

INTRODUCTION: Justicia pectoralis Jacq. is traditionally applied in folk medicine in Brazil and in several Latin American countries. The leaves are used in tea form, especially in the treatment of respiratory disorders, acting as an expectorant. It also has activity in gastrointestinal disorders, and it is anti-inflammatory, antioxidant, sedative, and estrogenic, among others. AIMS: To investigate the gastroprotective activity of the methanol extract of the leaves of Justicia pectoralis Jacq. (MEJP) in different experimental models of gastric ulcers. MATERIALS AND METHODS: The adult leaves of Justicia pectoralis Jacq. were collected and cultivated in beds, with an approximate spacing of 40 × 40 cm, organic fertilization, irrigation with potable water and without shelter from light. The MEJP was prepared from the dried and pulverized leaves and concentrated under reduced pressure in a rotary evaporator. For the experimental model of gastric ulcer, Swiss male albino mice were used. The inputs used in the experiment were MEJP at three different concentrations (250, 500 and 1000 mg/kg p.o.), cimetidine (50 mg/kg p.o.), indomethacin (50 mg/kg s.c.) and vehicle (10 mL/kg p.o.). RESULTS: MEJP (250, 500 and 1000 mg/kg p.o.) demonstrated gastroprotective activity, with levels of protection of 45.65%, 44.80% and 40.22%, respectively, compared to the control (vehicle). Compared with cimetidine (48.29%), MEJP showed similar gastroprotective activity. CONCLUSIONS: This study demonstrated the gastroprotective activity of MEJP and contributes to validate the traditional use the species for gastric disorders and provides a pharmacological basis for its clinical potential.


Subject(s)
Plant Extracts , Plant Leaves , Stomach Ulcer , Animals , Plant Extracts/pharmacology , Mice , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Plant Leaves/chemistry , Male , Anti-Ulcer Agents/pharmacology , Methanol/chemistry , Justicia/chemistry , Disease Models, Animal , Cimetidine/pharmacology , Acanthaceae/chemistry , Indomethacin , Brazil , Gastric Mucosa/drug effects , Gastric Mucosa/pathology
6.
J Physiol Pharmacol ; 75(1)2024 02.
Article in English | MEDLINE | ID: mdl-38583442

ABSTRACT

Using duodenocolic fistula in rats, this study attempts to highlight the particular cytoprotection aspects of the healing of fistulas and therapy potential of the stable gastric pentadecapeptide BPC 157, a cytoprotection mediator (i.e. upgrading minor vessels to induce healing at both fistula's sides). Upon duodenocolic fistula creation (two 'perforated' lesions put together) (assessed at 3, 6, 9, 12, and 15 min), BPC 157, given locally at the fistula, or intragastrically (10 µg/kg, 10 ng/kg), rapidly induces vessel 'recruitment', 'running' toward the defect, simultaneously at duodenum and colon, providing numerous collaterals and branching. The mRNA expression studies done at that time provided strongly elevated (nitric oxide synthase 2) and decreased (cyclooxygenase-2, vascular endothelial growth factor A, nitric oxide synthase (NOS)-1, NOS-3, nuclear factor-kappa-B-activating protein) gene expression. As therapy, rats with duodenocolic fistulas, received BPC 157 10 µg/kg, 10 ng/kg, per-orally, in drinking water till sacrifice, or alternatively, intraperitoneally, first application at 30 min after surgery, last at 24 h before sacrifice, at day 1, 3, 7, 14, 21, and 28. Controls exhibited both defects persisting, continuous fistula leakage, diarrhea, continuous weight loss, advanced adhesion formation and intestinal obstruction. Contrary, all BPC 157-treated rats have closed both defects, duodenal and colonic, no fistula leakage (finally, maximal instilled volume corresponds to healthy rats), no cachexia, the same weight as before surgery, no diarrhea, markedly less adhesion formation and intestinal passage obstruction. Thus, BPC 157 regimens resolve the duodenal/colon lesions and duodenocolic fistulas in rats, and rapid vessels recovery appears as the essential point in the implementation of the cytoprotection concept in the fistula therapy.


Subject(s)
Anti-Ulcer Agents , Fistula , Proteins , Rats , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A , Cytoprotection , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Nitric Oxide Synthase , Anti-Ulcer Agents/pharmacology
7.
Drug Dev Ind Pharm ; 50(5): 460-469, 2024 May.
Article in English | MEDLINE | ID: mdl-38602337

ABSTRACT

OBJECTIVE: Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS: FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1ß and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS: Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION: Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.


Subject(s)
Anti-Ulcer Agents , Antioxidants , Coumaric Acids , Emulsions , Nanoparticles , Stomach Ulcer , Animals , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Emulsions/chemistry , Stomach Ulcer/drug therapy , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/administration & dosage , Anti-Ulcer Agents/chemistry , Anti-Ulcer Agents/pharmacokinetics , Nanoparticles/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Rats, Wistar , Particle Size , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Solubility , Nitric Oxide/metabolism
8.
Inflammopharmacology ; 32(3): 1961-1982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652367

ABSTRACT

Gastric ulcer (GU) is one of the most common diseases of the upper gastrointestinal tract that affects millions of people worldwide. This study aimed to investigate the possible alleviating effect of a combined treatment of pantoprazole (PANTO) and adipose tissue-derived mesenchymal stem cells (ADSCs) in comparison with each treatment alone on the healing process of the experimentally induced GU in rats, and to uncover the involved pathways. Rats were divided into five groups: (1) Control, (2) GU, (3) PANTO, (4) ADSCs and (5) ADSCs + PANTO. Markers of oxidative stress, inflammation and apoptosis were assessed. The current data indicated that PANTO-, ADSCs- and ADSCs + PANTO-treated groups showed significant drop (p < 0.05) in serum advanced oxidation protein products (AOPPs) and advanced glycation end products (AGEPs) along with significant elevation (p < 0.05) in serum TAC versus the untreated GU group. Moreover, the treated groups (PANTO, ADSCs and ADSCs + PANTO) displayed significant down-regulation (p < 0.05) in gastric nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase 9 (MMP-9) and caspase-3 along with significant up-regulation (p < 0.05) in vascular endothelial growth factor (VEGF) and peroxisome proliferator-activated receptor gamma (PPARγ) genes expression compared to the untreated GU group. Immunohistochemical examination of gastric tissue for transforming growth factor ß1 (TGF-ß1), epidermal growth factor (EGF) and proliferating cell nuclear antigen (PCNA) showed moderate to mild and weak immune reactions, respectively in the PANTO-, ADSCs- and ADSCs + PANTO-treated rat. Histopathological investigation of gastric tissue revealed moderate to slight histopathological alterations and almost normal histological features of the epithelial cells, gastric mucosal layer, muscularis mucosa and submucosa in PANTO-, ADSCs- and ADSCs + PANTO-treated rats, respectively. Conclusively, the co-treatment with ADSCs and PANTO evidenced sententious physiological protection against GU by suppressing oxidative stress, inhibiting inflammation and reducing apoptosis with consequent acceleration of gastric tissue healing process.


Subject(s)
Apoptosis , Inflammation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Oxidative Stress , Pantoprazole , Stomach Ulcer , Animals , Oxidative Stress/drug effects , Stomach Ulcer/chemically induced , Rats , Apoptosis/drug effects , Pantoprazole/pharmacology , Inflammation/metabolism , Inflammation/drug therapy , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Male , Mesenchymal Stem Cell Transplantation/methods , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/administration & dosage , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Combined Modality Therapy
9.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Article in English | MEDLINE | ID: mdl-38566382

ABSTRACT

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Subject(s)
Anti-Ulcer Agents , Citrus , Fermentation , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Citrus/chemistry , Female , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Patents as Topic , Indomethacin/metabolism , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Omeprazole/pharmacology
10.
J Ethnopharmacol ; 327: 117970, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38428660

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE: Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN: Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS: We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS: Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1ß, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION: These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Omeprazole/pharmacology , Omeprazole/therapeutic use , Ethanol/pharmacology , Cytokines/metabolism , Gastric Mucosa
11.
Br J Nutr ; 131(11): 1844-1851, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38443203

ABSTRACT

The primary goal of the investigation was to analyse the anti-inflammatory and antioxidant properties of Gamma-linolenic acid (GLA) on rats with indomethacin (IND)-induced gastric ulcers. Thirty rats were divided into five groups: Control, IND (50 mg/kg, p.o.), IND pretreated with GLA 100 mg/kg (p.o. for 14 d), IND pretreated with GLA 150 mg/kg (p.o. for 14 d) and IND pretreated with omeprazole (20 mg/kg, p.o. for 14 d). The stomach tissues were examined to calculate the ulcer index and pH and analyse biochemical markers (prostaglandin E2 (PGE2), cyclooxygenase 1 (COX1), TNF-1, IL-6 and intercellular adhesion molecule-1 (ICAM1)) and oxidative stress parameters (malondialdehyde: (MDA), superoxide dismutase (SOD), glutathione (GSH) and CAT (catalase)) as well as undergo histopathological assessment. GLA 100 and 150 mg/kg showed a protective effect against IND-induced gastric damage. It reduced levels of COX1, TNF-1, IL-6 and ICAM and increased PGE2 levels. GLA also normalised antioxidant function by modulating MDA, SOD, GSH and CAT. GLA intervention protects against IND-induced gastric ulcers by restoring oxidant/antioxidant balance and reducing inflammation.


Subject(s)
Antioxidants , Dinoprostone , Indomethacin , Oxidative Stress , Rats, Wistar , Stomach Ulcer , gamma-Linolenic Acid , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/drug therapy , Indomethacin/adverse effects , Antioxidants/pharmacology , Rats , Oxidative Stress/drug effects , gamma-Linolenic Acid/pharmacology , Male , Dinoprostone/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Interleukin-6/metabolism , Intercellular Adhesion Molecule-1/metabolism , Superoxide Dismutase/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Glutathione/metabolism , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 1/metabolism , Malondialdehyde/metabolism , Omeprazole/pharmacology
12.
Drug Des Devel Ther ; 18: 193-213, 2024.
Article in English | MEDLINE | ID: mdl-38318501

ABSTRACT

Ulcer disorders including the oral mucosa, large intestine, and stomach mucosa, cause significant global health burdens. Conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), histamine H2 receptor antagonists (H2RAs), and cytoprotective agents have drawbacks like mucosal injury, diminish gastric acid secretion, and interact with concurrent medications. Therefore, alternative therapeutic approaches are needed to tackle this health concern. Plants are rich in active metabolites in the bark, roots, leaves, fruits, and seeds, and have been utilized for medicinal purposes since ancient times. The use of herbal therapy is crucial, and regulations are necessary to ensure the quality of products, particularly in randomized studies, to assess their efficacy and safety in treating ulcer disorders. This study aims to explore the anti-ulcer activity of medicinal plants in treating peptic ulcer disease, ulcerative colitis, and aphthous ulcers. Articles were searched in Scopus and PubMed, and filtered for publication from 2013 to 2023, resulting in a total of 460 from Scopus and 239 from PubMed. The articles were further screened by title and abstract and resulted in 55 articles. Natural products, rich in active metabolites, were described to manage ulcer disease by protecting the mucosa, reducing ulcer effects, inhibiting pro-inflammatory factors, and reducing bacterial load, thus improving patients' quality of life. Natural extracts have proven effective in managing other health problems, including ulcers by reducing pain and decreasing lesions. This review provides an overview of preclinical and clinical studies on medicinal plants, focusing on their effectiveness in treating conditions like peptic ulcers, ulcerative colitis, and aphthous ulcers.


Subject(s)
Anti-Ulcer Agents , Colitis, Ulcerative , Peptic Ulcer , Stomatitis, Aphthous , Humans , Ulcer , Colitis, Ulcerative/drug therapy , Stomatitis, Aphthous/drug therapy , Quality of Life , Peptic Ulcer/drug therapy , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Histamine H2 Antagonists , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
13.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38307355

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Subject(s)
Alpinia , Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/toxicity , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rhizome/metabolism , Ulcer/drug therapy , Luteolin/pharmacology , Histamine/metabolism , Gastric Mucosa , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
14.
PLoS One ; 19(1): e0287569, 2024.
Article in English | MEDLINE | ID: mdl-38271407

ABSTRACT

The objectives of the present study were to evaluate the acute toxicity, gastroprotective, therapeutic, anti-inflammatory and anti H. pylori activities of T. vulgaris total plant extract against ethanol-induced gastric ulcers in Sprague Dawley rats. Animals were divided into five groups i.e G-1 (Normal Control), Group 2 (ulcer control) were administered orally with 0.5% Carboxymethylcellulose (CMC), Group 3 (omeprazole treated) was administered orally with 20 mg/kg of omeprazole and Groups 4 and 5 (Low dose and High dose of the extract) were administered orally with 250, and 500 mg/ kg of Thymus vulgaris extract, respectively. After 1 hour, the normal group was orally administered with 0.5% CMC (5 ml/kg), whereas absolute alcohol (5ml/ kg) was orally administered to the ulcer control group, omeprazole group, and experimental groups. Stomachs were examined macroscopically and microscopically. Grossly, rats pre-treated with T. vulgaris demonstrated significantly decreased ulcer area and an increase in mucus secretion and pH of gastric content compared with the ulcer control group. Microscopy of gastric mucosa in the ulcer control group showed severe damage to gastric mucosa with edema and leukocytes infiltration of the submucosal layer. However, rats pretreated with omeprazole or Thyme vulgaris exhibited a mild to moderate disruption of the surface epithelium and lower level of edema and leukocyte infiltration of the submucosal layer. The T. vulgaris extract caused up-regulation of Hsp70 protein, down-regulation of Bax protein, and intense periodic acid Schiff uptake of the glandular portion of the stomach. Gastric mucosal homogenate of rats pre-treated with T. vulgaris exhibited significantly increased superoxide dismutase (SOD) and catalase (CAT) activities while malondialdehyde (MDA) level was significantly decreased. Based on the results showed in this study, Thymus vulgaris extract can be proposed as the safe medicinal plants for use and it has considerable gastroprotective potential via stomach epithelium protection against gastric ulcers and stomach lesions.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Thymus Plant , Rats , Animals , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ulcer/drug therapy , Ethanol/toxicity , Ethanol/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastric Mucosa/metabolism , Omeprazole/adverse effects , Antioxidants/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Edema/drug therapy
15.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851602

ABSTRACT

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Hydrochloric Acid , Ulcer/drug therapy , Ulcer/metabolism , Anti-Ulcer Agents/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Ethanol/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Extracts/metabolism , Amino Acids/metabolism , Gastric Mucosa/metabolism
16.
Biol Trace Elem Res ; 202(5): 2124-2132, 2024 May.
Article in English | MEDLINE | ID: mdl-37606879

ABSTRACT

Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.


Subject(s)
Anti-Ulcer Agents , Boric Acids , Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Antioxidants/metabolism , Interleukin-6/metabolism , AMP-Activated Protein Kinases , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Semaphorin-3A/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Gastric Mucosa , Ethanol/adverse effects , Signal Transduction , Homocysteine/metabolism
17.
J Ethnopharmacol ; 321: 117542, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056537

ABSTRACT

ETHNOPHARMACOLOGICAL IMPORTANCE: Uncaria tomentosa Willd. DC., is used in the Amazonian region of South America, wherein ethnic groups use the plant to treat diseases, including gastric disorders. However, despite its widespread popular use, this species has yet to be assessed for its anti-ulcer effects. AIM OF THE STUDY: In this study, we aimed to evaluate the in vivo gastroprotective and gastric healing activities of an aqueous extract of the bark of Uncaria tomentosa (AEUt) and sought to gain an understanding of the pharmacological mechanisms underlying these biological effects. MATERIALS AND METHODS: To verify the gastroprotective properties rats were treated with AEUt (30, 60, or 120 mg/kg) prior to inducing gastric ulceration with ethanol or piroxicam. Additionally, the involvement of nitric oxide, non-protein sulfhydryl compounds (NP-SH), α-2 adrenergic receptors, and prostaglandins was investigated. Furthermore, a pylorus ligature model was employed to investigate the antisecretory activity of AEUt. The gastric healing effects of AEUt (60 mg/kg) were examined in rats in which ulceration had been induced with 80% acetic acid, whereas the quality of healing was evaluated in mice with interleukin-induced recurrent ulcers. We also evaluated the in vivo thickness of the gastric wall using ultrasonography. Moreover, the levels of reduced glutathione (GSH) and malondialdehyde (MDA) were evaluated in ulcerated mucosa, and we determined the activities of the enzymes myeloperoxidase (MPO), N-acetyl-ß-D-glycosaminidase, superoxide dismutase, catalase, and glutathione S-transferase. In addition, we assessed the effects of AEUt on cell viability and subjected the AEUt to phytochemical analyses. RESULTS: Administration of the AEUt (60 or 120 mg/kg) prevented ethanol- and piroxicam-induced ulceration, which was also confirmed histologically. Moreover, we observed that pre-treatment with NEM and indomethacin abolished the gastroprotective effects of AEUt, thereby indicating the involvement of NP-SH and prostaglandins in these protective effects. In addition, we found that the administration of AEUt had no appreciable effects on the volume, acidity, or peptic activity of gastric juice. Furthermore, the AEUt (60 mg/kg) accelerated the gastric healing of acetic acid-induced ulcers by 46.2% and ultrasonographic findings revealed a reduction in the gastric wall thickness in this group. The gastric healing effect of AEUt was also accompanied by a reduction in MPO activity. The AEUt (60 mg/kg) also minimized ulcer recurrence in mice exposed to IL-1ß and was associated with the maintenance of GSH levels and a reduction in MDA contents. We deduce that the biological effects of AEUt could be associated with the activities of polyphenols and the alkaloids isomitraphylline and mitraphylline, identified as predominant constituents of the AEUt. Furthermore, we found no evidence to indicate that AEUt would have any cytotoxic effects. CONCLUSION: Collectively, our findings provide compelling evidence indicating the therapeutic efficacy of U. tomentosa. Our data indicate that compounds in AEUt confer gastroprotection and that this preventive effect of AEUt was accompanied by gastric healing and a reduction in gastric ulcer recurrence. Moreover, we provide evidence to indicate that the gastroprotective and gastric healing effects involve the antioxidant system and anti-inflammatory responses that contribute to preserving the gastric mucosa.


Subject(s)
Anti-Ulcer Agents , Cat's Claw , Plants, Medicinal , Stomach Ulcer , Rats , Mice , Animals , Piroxicam/adverse effects , Phytotherapy , Ulcer/drug therapy , Plant Bark , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Gastric Mucosa , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/pharmacology , Acetates/pharmacology , Prostaglandins
18.
Phytomedicine ; 123: 155236, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016383

ABSTRACT

BACKGROUND: Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE: This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD: SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT: Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1ß, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRß agonist via van der Waals binding and stabilizing the LXRß protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION: EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRß/C-fos/COX-1/PGE2 pathway.


Subject(s)
Anti-Ulcer Agents , Polyporaceae , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Ethanol/pharmacology , Rats, Wistar , Dinoprostone/metabolism , Molecular Docking Simulation , Transcription Factor AP-1/metabolism , Rats, Sprague-Dawley , Indomethacin/pharmacology , Mucus , Plant Extracts/chemistry , Gastric Mucosa , Water , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use
19.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139257

ABSTRACT

Gastric ulcers are often exacerbated by factors such as nonsteroidal anti-inflammatory drugs (NSAIDs) and inflammation, and they have a substantial impact on a significant portion of the population. Notably, indomethacin is recognized as a prominent contributor to ulcers. This study investigated this potential method, with normalization to the anti-inflammatory and antiulcer properties of deep-sea water (DSW)-derived mineral water, using an indomethacin-induced gastric ulcer model in rats. The study involved four groups (n = 6 rats/group): normal control group (CON), indomethacin-only group (IND), indomethacin with trace mineral water group (TM), and indomethacin with high magnesium low sodium water group (HMLS). For three weeks, the CON and IND groups consumed tap water, while the TM and HMLS groups had access to mineral water. Gastric ulcers were induced on the final day using indomethacin, for all groups except the CON group. The results demonstrated that HMLS intake significantly improved gastric mucosal damage, preserved mucin stability, and increased gastric thickness, indicating its potential to prevent and alleviate indomethacin-induced gastric ulcers. Furthermore, HMLS consumption led to the upregulation of key genes associated with inflammation and a reduction in inflammatory cytokines. These findings suggest that DSW-derived mineral water, and particularly its high Mg2+ content, may offer promising health benefits including anti-inflammatory and anti-ulcer properties.


Subject(s)
Anti-Ulcer Agents , Mineral Waters , Stomach Ulcer , Rats , Animals , Indomethacin/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents/adverse effects , Gastric Mucosa , Seawater , Inflammation/drug therapy
20.
J Med Food ; 26(11): 777-798, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37902784

ABSTRACT

The aim of this study was to systematically review the scientific literature, with Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) guidelines, of the articles found in the past 11 years on the gastroprotective role of fruit extracts in gastric ulcers induced by non-steroidal anti-inflammatory drugs (NSAIDs). Scientific articles published between 2010 and 2020 were included in this systematic review, including in vitro and in vivo models, to define the gastroprotective role of fruit extracts. Studies were selected by Rayyan using PubMed, Web of Science, Scopus, and Science Direct databases. The keywords for the search strategy were: "gastric injury," "gastric ulcer," "fruit," "indomethacin," and "aspirin." Twenty-two articles with animal models of gastric ulcers were included. The NSAIDs used were aspirin and indomethacin. To know the damage caused by these, the ulceration index and biomarkers, such as aggressive/defensive factors involved in the gastric ulceration process, were measured. Most studies have shown that fruit extracts have antiulcer activity, with the most abundant metabolites being flavonoids, followed by terpenes and alkaloids. Possible antiulcer activities such as antioxidant, cytoprotective, gastric acid antisecretory, anti-inflammatory, or angiogenesis stimulant were declared, manifested mainly as a reduction of lipid peroxidation products, an increase in antioxidant enzymes and prostaglandins, and by the formation of a protective film through protein precipitation in the ulcer area. This systematic review demonstrates the importance of fruit extracts as gastric protectors.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Fruit/metabolism , Gastric Mucosa/metabolism , Plant Extracts/therapeutic use , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Indomethacin/adverse effects , Aspirin/adverse effects , Aspirin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...