Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.917
Filter
1.
Int J Pharm ; 657: 124183, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38692500

ABSTRACT

We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.


Subject(s)
Bone Neoplasms , Cell Survival , Doxorubicin , Micelles , Oligopeptides , Osteosarcoma , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Humans , Polyethylene Glycols/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/administration & dosage , Bone Neoplasms/drug therapy , Cell Survival/drug effects , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry
2.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718220

ABSTRACT

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Subject(s)
Blood-Brain Barrier , Doxorubicin , Drug Delivery Systems , Nanoparticles , Silicon Dioxide , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Silicon Dioxide/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Animals , Porosity , Mice , Humans , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Particle Size , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Ligands , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
3.
J Control Release ; 369: 722-733, 2024 May.
Article in English | MEDLINE | ID: mdl-38583575

ABSTRACT

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Doxorubicin , Drug Delivery Systems , Endoplasmic Reticulum Chaperone BiP , Glioma , Mice, Nude , Peptides , Animals , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/pharmacokinetics , Humans , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Peptides/chemistry , Peptides/administration & dosage , Blood-Brain Barrier/metabolism , Heat-Shock Proteins/metabolism , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Mice, Inbred BALB C , Receptors, Dopamine D2/metabolism , Mice , Male
4.
ACS Biomater Sci Eng ; 10(5): 3425-3437, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38622760

ABSTRACT

Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8•Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Hydrogels , Triple Negative Breast Neoplasms , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Hydrogels/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Humans , Animals , Delayed-Action Preparations/chemistry , Cell Line, Tumor , Protein Engineering , Mice , Drug Liberation , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/chemistry
5.
Expert Opin Drug Deliv ; 21(3): 399-422, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623735

ABSTRACT

INTRODUCTION: Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED: Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION: The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.


Subject(s)
Antibiotics, Antineoplastic , Cardiotoxicity , Doxorubicin , Drug Carriers , Nanoparticles , Doxorubicin/adverse effects , Doxorubicin/administration & dosage , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Humans , Animals , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Polymers/chemistry , Heart Failure/drug therapy , Heart Failure/chemically induced , Lipids/chemistry
6.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669999

ABSTRACT

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Subject(s)
Doxorubicin , Hydrogen Peroxide , Oxygen , Photochemotherapy , Theranostic Nanomedicine , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Animals , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Oxygen/chemistry , Oxygen/metabolism , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Particle Size , Surface Properties , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Peroxides/chemistry , Peroxides/pharmacology , Nanoparticles/chemistry , Mice, Inbred BALB C , Zinc/chemistry , Zinc/pharmacology , Tumor Microenvironment/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
7.
Biomacromolecules ; 25(5): 2980-2989, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38587905

ABSTRACT

We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a ß-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a ß-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.


Subject(s)
Doxorubicin , Nanoparticles , Static Electricity , beta-Cyclodextrins , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Humans , Nanoparticles/chemistry , beta-Cyclodextrins/chemistry , Tumor Suppressor Protein p53/genetics , DNA/chemistry , Cell Survival/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Gene Transfer Techniques , Drug Carriers/chemistry
8.
Colloids Surf B Biointerfaces ; 238: 113892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581834

ABSTRACT

Receptor and ligand binding mediated targeted drug delivery systems (DDS) sometimes fail to target to tumor sites, and cancer cell membrane (CCM) coating can overcome the dilemma of immune clearance and nonspecific binding of DDS in vivo. In order to enhance the targeting ability and improve the anti-tumor effect, a dual targeting DDS was established based on U87MG CCM mediated homologous targeting and cyclic peptide RGD mediated active targeting. The DDS was prepared by coating RGD doped CCM onto doxorubicin (DOX) loaded liposomes. The homologous and active dual targeting ability endowed the DDS (RGD-CCM-LP-DOX) exhibited superior cancer cell affinity, improved tissue distribution and enhanced anti-tumor effects. In vivo pharmacodynamic studies revealed that RGD-CCM-LP-DOX exhibited superior therapeutic effect compared with homologous targeting CCM-LP-DOX and non-targetable LP-DOX injection. H&E staining, Ki 67 staining and TUNEL staining confirmed that RGD-CCM-LP-DOX not only increased anti-tumor efficacy, but also reduced tissue toxicity by changing the distribution in vivo. The experimental results showed that the RGD doped CCM camouflaged liposome DDS is a better choice for chemotherapeutics delivery.


Subject(s)
Cell Membrane , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Liposomes/chemistry , Animals , Humans , Mice , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Membrane/chemistry , Oligopeptides/chemistry , Mice, Inbred BALB C , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Nude , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Tissue Distribution , Drug Screening Assays, Antitumor
9.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599076

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.


Subject(s)
Biomimetic Materials , Cell Membrane , Doxorubicin , Nanoparticles , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/drug effects , Animals , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Dendrimers/chemistry , Mice , Cell Line, Tumor , Drug Delivery Systems , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Biomimetics , Particle Size
10.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615618

ABSTRACT

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Subject(s)
DNA , Doxorubicin , Immunotherapy , DNA/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Mice , Animals , Tumor Microenvironment/drug effects , Humans , Drug Delivery Systems , Mice, Inbred C57BL , Mice, Inbred BALB C , Cell Line, Tumor , Antigen-Presenting Cells/immunology , Nanoparticles/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Particle Size
11.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647653

ABSTRACT

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Subject(s)
Calcium , Doxorubicin , Drug Liberation , Glutathione , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Mice , Liposomes/chemistry , Humans , Calcium/chemistry , Calcium/metabolism , Glutathione/chemistry , Female , Gels/chemistry , Gelatin/chemistry , Mice, Nude , Nanoparticles/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cross-Linking Reagents/chemistry , Drug Delivery Systems/methods
12.
Chem Phys Lipids ; 261: 105396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621603

ABSTRACT

In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.


Subject(s)
Colonic Neoplasms , Doxorubicin , Mice, Inbred BALB C , Oxidation-Reduction , Phospholipids , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Mice , Phospholipids/chemistry , Temperature , Polyethylene Glycols/chemistry , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Liposomes/chemistry , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Particle Size
13.
Biochem Pharmacol ; 224: 116220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641307

ABSTRACT

Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.


Subject(s)
Antibiotics, Antineoplastic , Colorectal Neoplasms , Doxorubicin , Drug Delivery Systems , Phosphopyruvate Hydratase , Tumor Suppressor Proteins , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Phosphopyruvate Hydratase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Animals , Tumor Suppressor Proteins/metabolism , Humans , Mice , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Drug Delivery Systems/methods , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/administration & dosage , Mice, Inbred BALB C , Mice, Nude , Male , Cell Line, Tumor , HCT116 Cells , Xenograft Model Antitumor Assays/methods , Biomarkers, Tumor
14.
J Control Release ; 369: 128-145, 2024 May.
Article in English | MEDLINE | ID: mdl-38522817

ABSTRACT

BACKGROUND: Numerous attempts have been devoted to designing anti-angiogenic agents as a strategy to slow tumor growth and progression. Clinical applications of conventional anti-angiogenic agents face some challenges, e.g., off-target effects for TKIs and also low solid tumor penetration for mAbs. Furthermore, although anti-angiogenic therapy provides a normalization window for better chemo-RT response, in long-term treatments, tumor hypoxia as a result of total removal of VEGF-A by mAbs from the TME or complete blockade of TK receptors induces over-activation of compensatory angiogenic pathways, causing escape. Herein, we investigate the efficacy of si-DOX-DC-EVs to reduce glioma angiogenesis and invasiveness. METHODS: Mature DCs were generated from PBMC and EVs were isolated from the DCs culture media. siRNA and Doxorubicin were loaded into EVs by EP and incubation. Afterward, the uptake of DC-EVs was assessed by flow cytometry, and the subcellular localization of EVs was tested by confocal imaging. Tube formation assay was performed to assess the efficacy of si-DOX-DC-EVs to reduce tumor angiogenesis which was analyzed by DHM. Morphometric analysis of apoptotic cells was performed by DHM and confocal imaging and further, ELISA was performed for hypoxia-related and angiogenic cytokines. The impact of our theranostic system "si-DOX-DC-MVs" on the formation of vascular mimics, colonies, and invasion of C6 cells was checked in vitro. Afterward, orthotropic rat models of glioma were generated and the optimal administration route was selected by in vivo fluorescent analysis. Then, the microvessel density, vimentin expression, and accumulation of immune cells in tumoral tissues were assessed by IHC. Finally, necropsy and autopsy analyses were performed to check the safety of our theranostic agent. RESULTS: DC-EVs loaded with si-DOX-DC-EVs were successfully uptaken by cells with different subcellular trafficking for MVs and exosomes, reduced tumor angiogenesis in DHM analysis, and induced apoptosis in tumoral cells. Moreover, using DHM, we performed a detailed label-free analysis of tip cells which suggested that the tip cells in si-DC-MV treatments lost their geometrical migration capacity to form tube-like structures. Furthermore, the ELISAs performed highlighted that there is a mild overactivation of compensatory Tie2/Ang2 pathway after VEGF-A blockade which confers with severe hypoxia and sustains normal angiogenesis which is the optimal goal of anti-angiogenesis therapy for cancer to avoid resistance.The results of our VM analyses indicated that si-DOX-DC-MVs completely inhibited VM process. Moreover, the invasion, migration, and colony formation of the C6 cells treated with si-DOX-MVs were the least among all treatments. IN was the optimal route of administration. The MVD analyses indicated that si-DOX-DC-MVs reduced the number of tumoral microvessels and normalized vessel morphology. Intense CD8+ T cells were observed near the tumoral vessels in the si-DOX-DC-MVs group and with minimal activation of MT (low Vimentin expression). Necropsy and toxicology results proved that the theranostic system proposed is safe. CONCLUSIONS: DC-EVs loaded with VEGF-A siRNA and Doxorubicin were more potent than BV alone as a multi-disciplinary strategy that combats glioma growth by cytotoxic impacts of DOX and inhibits angiogenesis by VEGF-A siRNAs with excess immunologic benefits from DC-EVs. This next-generation anti-angiogenic agent normalizes tumor vessel density rather than extensively eliminating tumor vessels causing hypoxia and mesenchymal transition.


Subject(s)
Dendritic Cells , Doxorubicin , Extracellular Vesicles , Glioma , Neovascularization, Pathologic , RNA, Small Interfering , Vascular Endothelial Growth Factor A , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Glioma/drug therapy , Glioma/therapy , Glioma/pathology , Glioma/blood supply , Animals , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/genetics , Dendritic Cells/drug effects , Cell Line, Tumor , Humans , RNA, Small Interfering/administration & dosage , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/administration & dosage , Apoptosis/drug effects , Rats , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Angiogenesis
15.
J Control Release ; 369: 351-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38552963

ABSTRACT

Polymeric prodrug nanoparticles have gained increasing attention in the field of anticancer drug delivery because of their dual functions as a drug carrier and a therapeutic agent. Doxorubicin (DOX) is a highly effective chemotherapeutic agent for various cancers but causes cardiotoxicity. In this work, we developed polymeric prodrug (pHU) nanoparticles that serve as both a drug carrier of DOX and a therapeutic agent. The composition of pHU includes antiangiogenic hydroxybenzyl alcohol (HBA) and ursodeoxycholic acid (UDCA), covalently incorporated through hydrogen peroxide (H2O2)-responsive peroxalate. To enhance cancer cell specificity, pHU nanoparticles were surface decorated with taurodeoxycholic acid (TUDCA) to facilitate p-selectin-mediated cancer targeting. TUDCA-coated and DOX-loaded pHU nanoparticles (t-pHUDs) exhibited controlled release of DOX triggered by H2O2, characteristic of the tumor microenvironment. t-pHUDs also effectively suppressed cancer cell migration and vascular endothelial growth factor (VEGF) expression in response to H2O2. In animal studies, t-pHUDs exhibited highly potent anticancer activity. Notably, t-pHUDs, with their ability to accumulate preferentially in tumors due to the p-selectin targeting, surpassed the therapeutic efficacy of equivalent DOX and pHU nanoparticles alone. What is more, t-pHUDs significantly suppressed VEGF expression in tumors and mitigated hepato- and cardiotoxicity of DOX. Given their cancer targeting ability, enhanced therapeutic efficacy and minimized off-target toxicity, t-pHUDs present an innovative and targeted approach with great translational potential as an anticancer therapeutic agent.


Subject(s)
Doxorubicin , Nanoparticles , Prodrugs , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Prodrugs/administration & dosage , Prodrugs/chemistry , Nanoparticles/chemistry , Animals , Humans , Cell Line, Tumor , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/pathology , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Hydrogen Peroxide , Drug Carriers/chemistry , Ursodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/chemistry , Drug Liberation , Mice, Nude , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polymers/chemistry , Vascular Endothelial Growth Factor A/metabolism , Mice , Female , Drug Delivery Systems , Cell Movement/drug effects , Benzyl Alcohols/administration & dosage , Benzyl Alcohols/chemistry
16.
J Vasc Interv Radiol ; 35(6): 900-908.e2, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508448

ABSTRACT

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.


Subject(s)
Doxorubicin , Mice, Inbred BALB C , Tumor Microenvironment , Animals , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Female , Cell Line, Tumor , Mice , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/surgery , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/drug therapy , Breast Neoplasms/pathology , Transducers , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Polyethylene Glycols/chemistry , Disease Models, Animal , Leukocyte Common Antigens
17.
Biomed Pharmacother ; 174: 116446, 2024 May.
Article in English | MEDLINE | ID: mdl-38513599

ABSTRACT

Herein, we constructed innovative reduction-sensitive and targeted gelatin-based micelles for doxorubicin (DOX) delivery in tumor therapy. AS1411 aptamer-modified gelatin-ss-tocopherol succinate (AGSST) and the control GSST without AS1411 modification were synthesized and characterized. Antitumor drug DOX-containing AGSST (AGSST-D) and GSST-D nanoparticles were prepared, and their shapes were almost spherical. Reduction-responsive characteristics of DOX release in vitro were revealed in AGSST-D and GSST-D. Compared with non-targeted GSST-D, AGSST-D demonstrated better intracellular uptake and stronger cytotoxicity against nucleolin-overexpressed A549 cells. Importantly, AGSST-D micelles showed more effective killing activity in A549-bearing mice than GSST-D and DOX⋅HCl. It was revealed that AGSST-D micelles had no obvious systemic toxicity. Overall, AGSST micelles would have the potential to be an effective drug carrier for targeted tumor therapy.


Subject(s)
Aptamers, Nucleotide , Doxorubicin , Drug Delivery Systems , Gelatin , Micelles , Oligodeoxyribonucleotides , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Aptamers, Nucleotide/pharmacology , Gelatin/chemistry , A549 Cells , Drug Delivery Systems/methods , Mice , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/pharmacology , Mice, Nude , Mice, Inbred BALB C , Drug Carriers/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Xenograft Model Antitumor Assays , Drug Liberation , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
18.
Biomater Adv ; 160: 213831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552501

ABSTRACT

Nanoparticle (NP) use in cancer therapy is extensively studied in skin cancers. Cancer-associated fibroblasts (CAFs), a major tumor microenvironment (TME) component, promote cancer progression, making dual targeting of cancer cells and CAFs an effective therapy. However, dual NP-based targeting therapy on both tumor cells and CAFs is poorly investigated in skin cancers. Herein, we prepared and characterized doxorubicin-loaded PLGA NPs (DOX@PLGA NPs) and studied their anti-tumor effects on cutaneous melanoma (SKCM)(AN, M14) and cutaneous squamous cell carcinoma (cSCC) (MET1, MET2) cell lines in monolayer, as well as their impact on CAF deactivation. Then, we established 3D full thickness models (FTM) models of SKCM and cSCC using AN or MET2 cells on dermis matrix populated with CAFs respectively, and assessed the NPs' tumor penetration, tumor-killing ability, and CAF phenotype regulation through both topical administration and intradermal injection. The results show that, in monolayer, DOX@PLGA NPs inhibited cancer cell growth and induced apoptosis in a dose- and time-dependent manner, with a weaker effect on CAFs. DOX@PLGA NPs reduced CAF-marker expression and had successful anti-tumor effects in 3D skin cancer FTMs, with decreased tumor-load and invasion. DOX@PLGA NPs also showed great delivery potential in the FTMs and could be used as a platform for future functional study of NPs in skin cancers using human-derived skin equivalents. This study provides promising evidence for the potential of DOX@PLGA NPs in dual targeting therapy for SKCM and cSCC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Squamous Cell , Doxorubicin , Melanoma , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Skin Neoplasms , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Melanoma/drug therapy , Melanoma/pathology , Nanoparticles/chemistry , Cell Line, Tumor , Apoptosis/drug effects , Animals , Tumor Microenvironment/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/therapeutic use
19.
Clin J Gastroenterol ; 17(3): 511-514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38526803

ABSTRACT

Hemangiomas are most common benign liver tumor. Most patients have an excellent prognosis because of the small size and benign nature of tumor. On some occasions, giant liver hemangioma may cause symptoms and significant challenges due to its complication. We report a case of giant liver hemangioma treated with minimal invasive approach by transarterial embolization (TAE). Following three TAE sessions over a specific timeframe, the patient was successfully managed, addressing that TAE may be a useful alternative to hepatic surgery in such cases.


Subject(s)
Bleomycin , Embolization, Therapeutic , Ethiodized Oil , Hemangioma , Liver Neoplasms , Humans , Liver Neoplasms/therapy , Liver Neoplasms/diagnostic imaging , Hemangioma/therapy , Hemangioma/diagnostic imaging , Ethiodized Oil/administration & dosage , Bleomycin/administration & dosage , Bleomycin/therapeutic use , Embolization, Therapeutic/methods , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/therapeutic use , Female , Male , Middle Aged , Emulsions , Chemoembolization, Therapeutic/methods
20.
Int J Pharm ; 657: 124048, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38537925

ABSTRACT

Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.


Subject(s)
Cell Survival , Doxorubicin , Drug Carriers , Drug Liberation , Lipids , Nanoparticles , Particle Size , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Carriers/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Nanostructures/chemistry , Drug Stability , HeLa Cells , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...