Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
J Cancer Res Clin Oncol ; 150(5): 237, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713378

ABSTRACT

PURPOSE: Bispecific antibodies (BsAbs), capable of targeting two antigens simultaneously, represent a significant advancement by employing dual mechanisms of action for tumor suppression. However, how to pair targets to develop effective and safe bispecific drugs is a major challenge for pharmaceutical companies. METHODS: Using machine learning models, we refined the biological characteristics of currently approved or in clinical development BsAbs and analyzed hundreds of membrane proteins as bispecific targets to predict the likelihood of successful drug development for various target combinations. Moreover, to enhance the interpretability of prediction results in bispecific target combination, we combined machine learning models with Large Language Models (LLMs). Through a Retrieval-Augmented Generation (RAG) approach, we supplement each pair of bispecific targets' machine learning prediction with important features and rationales, generating interpretable analytical reports. RESULTS: In this study, the XGBoost model with pairwise learning was employed to predict the druggability of BsAbs. By analyzing extensive data on BsAbs and designing features from perspectives such as target activity, safety, cell type specificity, pathway mechanism, and gene embedding representation, our model is able to predict target combinations of BsAbs with high market potential. Specifically, we integrated XGBoost with the GPT model to discuss the efficacy of each bispecific target pair, thereby aiding the decision-making for drug developers. CONCLUSION: The novelty of this study lies in the integration of machine learning and GPT techniques to provide a novel framework for the design of BsAbs drugs. This holistic approach not only improves prediction accuracy, but also enhances the interpretability and innovativeness of drug design.


Subject(s)
Antibodies, Bispecific , Machine Learning , Antibodies, Bispecific/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/immunology
2.
Cancer Biol Ther ; 25(1): 2356820, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38801069

ABSTRACT

Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.


Subject(s)
Antibodies, Bispecific , Immunotherapy , Prostatic Neoplasms , T-Lymphocytes , Humans , Male , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , T-Lymphocytes/immunology , Immunotherapy/methods , Antigens, Neoplasm/immunology , Animals
3.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776391

ABSTRACT

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Subject(s)
Antibodies, Bispecific , Claudins , Macaca fascicularis , T-Lymphocytes , Animals , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Claudins/metabolism , Mice , RNA/metabolism , Female , Cell Line, Tumor , Xenograft Model Antitumor Assays , Liposomes , Nanoparticles
4.
Nat Commun ; 15(1): 4091, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750034

ABSTRACT

Cibisatamab is a bispecific antibody-based construct targeting carcinoembryonic antigen (CEA) on tumour cells and CD3 epsilon chain as a T-cell engager. Here we evaluated cibisatamab for advanced CEA-positive solid tumours in two open-label Phase 1 dose-escalation and -expansion studies: as a single agent with or without obinutuzumab in S1 (NCT02324257) and with atezolizumab in S2 (NCT02650713). Primary endpoints were safety, dose finding, and pharmacokinetics in S1; safety and dose finding in S2. Secondary endpoints were anti-tumour activity (including overall response rate, ORR) and pharmacodynamics in S1; anti-tumour activity, pharmacodynamics and pharmacokinetics in S2. S1 and S2 enrolled a total of 149 and 228 patients, respectively. Grade ≥3 cibisatamab-related adverse events occurred in 36% of S1 and 49% of S2 patients. The ORR was 4% in S1 and 7% in S2. In S2, patients with microsatellite stable colorectal carcinoma (MSS-CRC) given flat doses of cibisatamab and atezolizumab demonstrated an ORR of 14%. In S1 and S2, 40% and 52% of patients, respectively, developed persistent anti-drug antibodies (ADAs). ADA appearance could be mitigated by obinutuzumab-pretreatment, with 8% of patients having persistent ADAs. Overall, cibisatamab warrants further exploration in immunotherapy combination strategies for MSS-CRC.


Subject(s)
Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , CD3 Complex , Carcinoembryonic Antigen , Neoplasms , Humans , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Female , Male , Middle Aged , Aged , CD3 Complex/immunology , Adult , Carcinoembryonic Antigen/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
5.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 225-232, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716593

ABSTRACT

Objective: To construct a novel dual-specific antibody targeting human CD123 (CD123 DuAb) and study its effects in acute myeloid leukemia (AML) . Methods: Based on the variable region of the CD123 monoclonal antibody independently developed at our institution, the CD123 DuAb expression plasmid was constructed by molecular cloning and transfected into ExpiCHO-S cells to prepare the antibody protein. Through a series of in vitro experiments, its activation and proliferation effect on T cells, as well as the effect of promoting T-cell killing of AML cells, were verified. Results: ① A novel CD123 DuAb plasmid targeting CD123 was successfully constructed and expressed in the Expi-CHO eukaryotic system. ②The CD123 DuAb could bind both CD3 on T cells and CD123 on CD123(+) tumor cells. ③When T cells were co-cultured with MV4-11 cells with addition of the CD123 DuAb at a concentration of 1 nmol/L, the positive expression rates of CD69 and CD25 on T cells were 68.0% and 44.3%, respectively, which were significantly higher than those of the control group (P<0.05). ④Co-culture with CD123 DuAb at 1 nmol/L promoted T-cell proliferation, and the absolute T-cell count increased from 5×10(5)/ml to 3.2×10(6)/ml on day 9, and CFSE fluorescence intensity decreased significantly. ⑤ With the increase in CD123 DuAb concentration in the culture system, T-cell exhaustion and apoptosis increased. When the CD123 DuAb was added at a concentration of 1 nmol/L to the culture system, the proportion of CD8(+) PD-1(+) LAG-3(+) T cells was 10.90%, and the proportion of propidium iodide (PI) (-) Annexin Ⅴ(+) T cells and PI(+) Annexin Ⅴ(+) T cells was 18.27% and 11.43%, respectively, which were significantly higher than those in the control group (P<0.05). ⑥ The CD123 DuAb significantly activated T cells, and the activation intensity was positively correlated with its concentration. The expression rate of CD107a on T cells reached 16.05% with 1 nmol/L CD123 DuAb, which was significantly higher than that of the control group (P<0.05). ⑦The CD123 DuAb promoted cytokine secretion by T cells at a concentration of 1 nmol/L, and the concentration of IFN-γ and TNF-α in the supernatant of the co-culture system reached 193.8 pg/ml and 169.8 pg/ml, respectively, which was significantly higher than that of the control group (P<0.05). ⑧When CD123 DuAb was added at a concentration of 1 nmol/L to the co-culture system of T cells and CD123(+) tumor cells, the killing intensity of T cells significantly increased, and the residual rates of CD123(+) MV4-11 cells, CD123(+) Molm13 cells, and CD123(+) THP-1 cells were 7.4%, 6.7%, and 14.6% on day 3, respectively, which were significantly lower than those in the control group (P<0.05) . Conclusion: In this study, a novel CD123 DuAb was constructed and expressed. In vitro experiments verified that the DuAb binds to CD123(+) tumor cells and T cells simultaneously, promotes T-cell activation and proliferation, and facilitates their anti-leukemia effect, which provides a basis for further clinical research.


Subject(s)
Antibodies, Bispecific , Interleukin-3 Receptor alpha Subunit , Leukemia, Myeloid, Acute , Humans , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology
6.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724599

ABSTRACT

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Subject(s)
Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
7.
PLoS One ; 19(5): e0300174, 2024.
Article in English | MEDLINE | ID: mdl-38696390

ABSTRACT

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic.


Subject(s)
Antibodies, Bispecific , CD3 Complex , Immunologic Memory , Leukemia, Myeloid, Acute , Sialic Acid Binding Ig-like Lectin 3 , Animals , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Mice , CD3 Complex/immunology , Immunologic Memory/drug effects , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
8.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786100

ABSTRACT

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


Subject(s)
ADP-ribosyl Cyclase 1 , Multiple Myeloma , T-Lymphocytes , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/immunology , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , CD3 Complex/metabolism , CD28 Antigens/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Recurrence
9.
Expert Rev Anticancer Ther ; 24(6): 379-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798125

ABSTRACT

INTRODUCTION: Modern immunotherapy approaches are revolutionizing the treatment scenario of relapsed/refractory (RR) multiple myeloma (MM) patients, providing an opportunity to reach deep level of responses and extend survival outcomes. AREAS COVERED: Antibody-drug conjugates (ADCs) and T-cell redirecting treatments, including bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T cells therapy, have been recently introduced in the treatment of RRMM. Some agents have already received regulatory approval, while newer constructs, novel combinations, and applications in earlier lines of therapy are currently being explored. This review discusses the current landscape and possible development of ADCs, BsAbs and CAR-T cells immunotherapies. EXPERT OPINION: ADCs, BsAbs, and CAR-T therapy have demonstrated substantial activity in heavily pretreated, triple-class exposed (TCE) MM patients, and T-cell redirecting treatments represent new standards of care after third (European Medicines Agency, EMA), or fourth (Food and Drug Administration, FDA), line of therapy. All these three immunotherapies carry advantages and disadvantages, with different accessibility and new toxicities that require appropriate management and guidelines. Multiple on-going programs include combinations therapies and applications in earlier lines of treatment, as well as the development of novel agents or construct to enhance potency, reduce toxicity and facilitate administration. Sequencing is a challenge, with few data available and mechanisms of resistance still to be unraveled.


Subject(s)
Antibodies, Bispecific , Immunoconjugates , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/pharmacology , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Immunoconjugates/pharmacology , Immunoconjugates/administration & dosage , Immunotherapy, Adoptive/methods , Animals , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Survival Rate , Immunotherapy/methods , Drug Development
10.
Virus Res ; 345: 199383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697296

ABSTRACT

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Protein Binding , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Mice , Neutralization Tests
11.
Front Immunol ; 15: 1378813, 2024.
Article in English | MEDLINE | ID: mdl-38720892

ABSTRACT

Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results: NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion: NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.


Subject(s)
Antibodies, Bispecific , CD47 Antigen , Carcinoembryonic Antigen , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Mice , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Cell Line, Tumor , Carcinoembryonic Antigen/immunology , Xenograft Model Antitumor Assays , Neoplasms/immunology , Neoplasms/drug therapy , Female , Macaca fascicularis , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/immunology , GPI-Linked Proteins
12.
Front Immunol ; 15: 1391954, 2024.
Article in English | MEDLINE | ID: mdl-38765008

ABSTRACT

Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.


Subject(s)
Antibodies, Bispecific , B7 Antigens , Sarcoma , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Sarcoma/immunology , Sarcoma/drug therapy , B7 Antigens/immunology , B7 Antigens/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Female , Male , Animals , Lymphocyte Activation/immunology , Middle Aged , CD3 Complex/immunology , Aged , Cell Proliferation , Adult
13.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745496

ABSTRACT

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Subject(s)
Antibodies, Bispecific , B7-H1 Antigen , Tumor Microenvironment , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Humans , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Macaca fascicularis
14.
Oncoimmunology ; 13(1): 2338558, 2024.
Article in English | MEDLINE | ID: mdl-38623463

ABSTRACT

T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-ß play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-ß inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-ß, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-ß by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Colorectal Neoplasms , Animals , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/pharmacology , B7-H1 Antigen , Colorectal Neoplasms/drug therapy , T-Lymphocytes , Transforming Growth Factor beta , Tumor Microenvironment
17.
Thromb Res ; 237: 148-153, 2024 May.
Article in English | MEDLINE | ID: mdl-38603817

ABSTRACT

Optimal management of cardiovascular disease (CVD) in people with haemophilia (PWH) is a growing issue, given the continuing improvement in life expectancy among PWH. The evolving treatment paradigms targeting higher trough levels and the advent of non-factor replacement therapies (NFRT) means much of the 'protection' PWH were thought to have against CVD may be lost. There is a paucity of evidence regarding the safety of using anticoagulants in PWH. We designed a study assessing the thrombin generation (TG) of PWH of different severities and treatments, compared to non-haemophilia patients receiving a Factor Xa (FXa) inhibitor (apixaban or rivaroxaban), healthy controls, and assessing TG parameters of adding FXa inhibitor to the plasma of PWH receiving emicizumab prophylaxis. In total, 40 patients were included. TG was initiated with 5pM tissue factor (TF) using the calibrated automated thrombinoscope. Compared to those with mild haemophilia, patients receiving a FXa inhibitor had higher endogenous thrombin potential (ETP) (1278.42 vs 1831.36) and velocity index (40.71 vs 112.56), but both had a similar peak height (154.0 vs 262.63) and time to peak (both 5.83). People with severe haemophilia receiving emicizumab had significantly improved TG parameters compared to those not receiving emicizumab - ETP 1678.11 vs 809.96 and peak height 233.8 vs 92.05; however, when FXa inhibitor was added their TG parameters deteriorated to the severe haemophilia range (ETP 1179.60 and peak height 103.05). TG may provide additional useful information regarding the use of anticoagulants in PWH.


Subject(s)
Factor Xa Inhibitors , Hemophilia A , Pyridones , Thrombin , Humans , Hemophilia A/drug therapy , Hemophilia A/blood , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/pharmacology , Thrombin/metabolism , Male , Adult , Middle Aged , Rivaroxaban/therapeutic use , Rivaroxaban/pharmacology , Female , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Young Adult , Pyrazoles/therapeutic use
19.
J Immunother ; 47(5): 160-171, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38562119

ABSTRACT

SUMMARY: T-cell-directed cancer therapies such as T-cell-engaging bispecifics (TCBs) are commonly associated with cytokine release syndrome and associated clinical signs that can limit their tolerability and therapeutic benefit. Strategies for reducing cytokine release are therefore needed. Here, we report on studies performed in cynomolgus monkeys to test different approaches for mitigating cytokine release with TCBs. A "priming dose" as well as subcutaneous dosing reduced cytokine release compared with intravenous dosing but did not affect the intended T-cell response to the bispecific. As another strategy, cytokines or cytokine responses were blocked with an anti-IL-6 antibody, dexamethasone, or a JAK1/TYK2-selective inhibitor, and the effects on toxicity as well as T-cell responses to a TCB were evaluated. The JAK1/TYK2 inhibitor and dexamethasone prevented CRS-associated clinical signs on the day of TCB administration, but the anti-IL-6 had little effect. All interventions allowed for functional T-cell responses and expected damage to target-bearing tissues, but the JAK1/TYK2 inhibitor prevented the upregulation of activation markers on T cells, suggesting the potential for suppression of T-cell responses. Our results suggest that short-term prophylactic dexamethasone treatment may be an effective option for blocking cytokine responses without affecting desired T-cell responses to TCBs.


Subject(s)
Antibodies, Bispecific , Cytokines , Macaca fascicularis , T-Lymphocytes , Animals , Antibodies, Bispecific/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cytokines/metabolism , Dexamethasone/pharmacology , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Interleukin-6/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Neoplasms/immunology , Neoplasms/drug therapy
20.
Biomed Pharmacother ; 174: 116565, 2024 May.
Article in English | MEDLINE | ID: mdl-38603888

ABSTRACT

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Subject(s)
Antibodies, Bispecific , Neural Cell Adhesion Molecule L1 , T-Lymphocytes , Animals , Female , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/pharmacology , CD3 Complex/immunology , Cell Line, Tumor , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Neural Cell Adhesion Molecule L1/immunology , Neural Cell Adhesion Molecule L1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...