Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.136
Filter
1.
ASAIO J ; 70(6): 546-552, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829573

ABSTRACT

Drug treatments for coronavirus disease 2019 (COVID-19) dramatically improve patient outcomes, and although extracorporeal membrane oxygenation (ECMO) has significant use in these patients, it is unknown whether ECMO affects drug dosing. We used an ex vivo adult ECMO model to measure ECMO circuit effects on concentrations of specific COVID-19 drug treatments. Three identical ECMO circuits used in adult patients were set up. Circuits were primed with fresh human blood (temperature and pH maintained within normal limits). Three polystyrene jars with 75 ml fresh human blood were used as controls. Remdesivir, GS-441524, nafamostat, and tocilizumab were injected in the circuit and control jars at therapeutic concentrations. Samples were taken from circuit and control jars at predefined time points over 6 h and drug concentrations were measured using validated assays. Relative to baseline, mean (± standard deviation [SD]) study drug recoveries in both controls and circuits at 6 h were significantly lower for remdesivir (32.2% [±2.7] and 12.4% [±2.1], p < 0.001), nafamostat (21.4% [±5.0] and 0.0% [±0.0], p = 0.018). Reduced concentrations of COVID-19 drug treatments in ECMO circuits is a clinical concern. Remdesivir and nafamostat may need dose adjustments. Clinical pharmacokinetic studies are suggested to guide optimized COVID-19 drug treatment dosing during ECMO.


Subject(s)
Adenosine Monophosphate , Alanine , COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/pharmacokinetics , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Guanidines/pharmacokinetics , Guanidines/therapeutic use , Benzamidines , COVID-19/therapy , SARS-CoV-2 , Adenosine/analogs & derivatives
2.
Nat Commun ; 15(1): 4091, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750034

ABSTRACT

Cibisatamab is a bispecific antibody-based construct targeting carcinoembryonic antigen (CEA) on tumour cells and CD3 epsilon chain as a T-cell engager. Here we evaluated cibisatamab for advanced CEA-positive solid tumours in two open-label Phase 1 dose-escalation and -expansion studies: as a single agent with or without obinutuzumab in S1 (NCT02324257) and with atezolizumab in S2 (NCT02650713). Primary endpoints were safety, dose finding, and pharmacokinetics in S1; safety and dose finding in S2. Secondary endpoints were anti-tumour activity (including overall response rate, ORR) and pharmacodynamics in S1; anti-tumour activity, pharmacodynamics and pharmacokinetics in S2. S1 and S2 enrolled a total of 149 and 228 patients, respectively. Grade ≥3 cibisatamab-related adverse events occurred in 36% of S1 and 49% of S2 patients. The ORR was 4% in S1 and 7% in S2. In S2, patients with microsatellite stable colorectal carcinoma (MSS-CRC) given flat doses of cibisatamab and atezolizumab demonstrated an ORR of 14%. In S1 and S2, 40% and 52% of patients, respectively, developed persistent anti-drug antibodies (ADAs). ADA appearance could be mitigated by obinutuzumab-pretreatment, with 8% of patients having persistent ADAs. Overall, cibisatamab warrants further exploration in immunotherapy combination strategies for MSS-CRC.


Subject(s)
Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , CD3 Complex , Carcinoembryonic Antigen , Neoplasms , Humans , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Female , Male , Middle Aged , Aged , CD3 Complex/immunology , Adult , Carcinoembryonic Antigen/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
3.
Clin Transl Sci ; 17(6): e13825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808543

ABSTRACT

Mosunetuzumab (Mosun) is a CD20xCD3 T-cell engaging bispecific antibody that redirects T cells to eliminate malignant B cells. The approved step-up dose regimen of 1/2/60/30 mg IV is designed to mitigate cytokine release syndrome (CRS) and maximize efficacy in early cycles. A population pharmacokinetic (popPK) model was developed from 439 patients with relapsed/refractory B-Cell Non-Hodgkin lymphoma receiving Mosun IV monotherapy, including fixed dosing (0.05-2.8 mg IV every 3 weeks (q3w)) and Cycle 1 step-up dosing groups (0.4/1/2.8-1/2/60/30 mg IV q3w). Prior to Mosun treatment, ~50% of patients had residual levels of anti-CD20 drugs (e.g., rituximab or obinutuzumab) from prior treatment. CD20 receptor binding dynamics and rituximab/obinutuzumab PK were incorporated into the model to calculate the Mosun CD20 receptor occupancy percentage (RO%) over time. A two-compartment model with time-dependent clearance (CL) best described the data. The typical patient had an initial CL of 1.08 L/day, transitioning to a steady-state CL of 0.584 L/day. Statistically relevant covariates on PK parameters included body weight, albumin, sex, tumor burden, and baseline anti-CD20 drug concentration; no covariate was found to have a clinically relevant impact on exposure at the approved dose. Mosun CD20 RO% was highly variable, attributed to the large variability in residual baseline anti-CD20 drug concentration (median = 10 µg/mL). The 60 mg loading doses increased Mosun CD20 RO% in Cycle 1, providing efficacious exposures in the presence of the competing anti-CD20 drugs. PopPK model simulations, investigating Mosun dose delays, informed treatment resumption protocols to ensure CRS mitigation.


Subject(s)
Antibodies, Bispecific , Antigens, CD20 , Lymphoma, B-Cell , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Middle Aged , Male , Aged , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/immunology , Female , Adult , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Aged, 80 and over , Models, Biological , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Young Adult , Dose-Response Relationship, Drug , Drug Administration Schedule , Rituximab/pharmacokinetics , Rituximab/administration & dosage
4.
BioDrugs ; 38(3): 341-351, 2024 May.
Article in English | MEDLINE | ID: mdl-38584236

ABSTRACT

Biologic therapy involving anti-tumor necrosis factor-α (anti-TNFα) agents has fundamentally changed the management of patients with immune-mediated inflammatory diseases, including rheumatoid arthritis, thus benefiting many patients. Nevertheless, the inability of some patients to achieve low disease activity or clinical remission remains a major concern. To address such concerns, next-generation anti-TNFα agents that differ from the immunoglobulin G-format anti-TNFα agents that have been used to date are being developed using antibody-engineering technology. Their unique design employing novel molecular characteristics affords several advantages, such as early improvement of clinical symptoms, optimization of drug bioavailability, enhancement of tissue penetration, and a reduction in side effects. This holds promise for a new paradigm shift in biologic therapy via the use of next-generation anti-TNFα agents. Ozoralizumab, a next-generation anti-TNFα agent that was recently approved in Japan, comprises a variable region heavy-chain format. It has a completely different structure from conventional therapeutic antibodies, such as a small molecular size, an albumin-binding module, and a unique format that produces an avidity effect. Ozoralizumab exhibited rapid biodistribution into joints, provided attenuation of Fcγ receptor-mediated inflammatory responses, and had a high binding affinity to TNFα in non-clinical studies. In clinical trials, ozoralizumab yielded an early improvement in clinical symptoms, a sustained efficacy for up to 52 weeks, and an acceptable tolerability in patients with rheumatoid arthritis. This review focuses on the results of pre-clinical and clinical trials for ozoralizumab and outlines the progress in next-generation antibody development.


Subject(s)
Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Arthritis, Rheumatoid/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Animals
7.
Clin Pharmacokinet ; 63(5): 669-681, 2024 May.
Article in English | MEDLINE | ID: mdl-38578394

ABSTRACT

BACKGROUND AND OBJECTIVE: Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of an antibody with affinity for Trop-2 coupled to SN-38 via hydrolyzable linker. SG is approved for patients with metastatic triple-negative breast cancer (mTNBC) who have received two or more prior chemotherapies (at least one in a metastatic setting) and for patients with pretreated hormone receptor positive (HR+)/human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. METHODS: In these analyses, the pharmacokinetics of SG, free SN-38, and total antibody (tAB) were characterized using data from 529 patients with mTNBC or other solid tumors across two large clinical trials (NCT01631552; ASCENT, NCT02574455). Three population pharmacokinetic models were constructed using non-linear mixed-effects modeling; clinically relevant covariates were evaluated to assess their impact on exposure. Models for SG and tAB were developed independently whereas free SN-38 was sequentially generated via a first-order release process from SG. RESULTS: Pharmacokinetics of the three analytes were each described by a two-compartment model with estimated body weight-based scaling exponents for clearance and volume. Typical parameter estimates for clearance and steady-state volume of distribution were 0.133 L/h and 3.68 L for SG and 0.0164 L/h and 4.26 L for tAB, respectively. Mild-to-moderate renal impairment, mild hepatic impairment, age, sex, baseline albumin level, tumor type, UGT1A1 genotype, or Trop-2 expression did not have a clinically relevant impact on exposure for any of the three analytes. CONCLUSIONS: These analyses support the approved SG dosing regimen of 10 mg/kg as intravenous infusion on days 1 and 8 of 21-day cycles and did not identify a need for dose adjustment based on evaluated covariates or disease characteristics.


Subject(s)
Antibodies, Monoclonal, Humanized , Camptothecin , Immunoconjugates , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Female , Camptothecin/analogs & derivatives , Camptothecin/pharmacokinetics , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Middle Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Immunoconjugates/administration & dosage , Aged , Adult , Male , Irinotecan/pharmacokinetics , Irinotecan/administration & dosage , Irinotecan/therapeutic use , Models, Biological , Aged, 80 and over , Neoplasm Metastasis , Neoplasms/drug therapy , Young Adult
8.
Antimicrob Agents Chemother ; 68(5): e0158723, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534112

ABSTRACT

AZD7442 is a combination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies, tixagevimab and cilgavimab, developed for pre-exposure prophylaxis (PrEP) and treatment of coronavirus disease 2019 (COVID-19). Using data from eight clinical trials, we describe a population pharmacokinetic (popPK) model of AZD7442 and show how modeling of "interim" data accelerated decision-making during the COVID-19 pandemic. The final model was a two-compartmental distribution model with first-order absorption and elimination, including standard allometric exponents for the effect of body weight on clearance and volume. Other covariates included were as follows: sex, age >65 years, body mass index ≥30 kg/m2, and diabetes on absorption rate; diabetes on clearance; Black race on central volume; and intramuscular (IM) injection site on bioavailability. Simulations indicated that IM injection site and body weight had > 20% effects on AZD7442 exposure, but no covariates were considered to have a clinically relevant impact requiring dose adjustment. The pharmacokinetics of AZD7442, cilgavimab, and tixagevimab were comparable and followed linear kinetics with extended half-lives (median 78.6 days for AZD7442), affording prolonged protection against susceptible SARS-CoV-2 variants. Comparison of popPK simulations based on "interim data" with a target concentration based on 80% viral inhibition and assuming 1.81% partitioning into the nasal lining fluid supported a decision to double the PrEP dosage from 300 mg to 600 mg to prolong protection against Omicron variants. Serum AZD7442 concentrations in adolescents weighing 40-95 kg were predicted to be only marginally different from those observed in adults, supporting authorization for use in adolescents before clinical data were available. In these cases, popPK modeling enabled accelerated clinical decision-making.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , Female , Male , Middle Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Adult , COVID-19/prevention & control , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Young Adult , Adolescent , Antibodies, Neutralizing/blood
9.
Pediatr Blood Cancer ; 71(6): e30938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520670

ABSTRACT

PURPOSE: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors. SEMA4D was identified as a strong candidate proto-oncogene in a model of osteosarcoma. Based on these preclinical and clinical data, we conducted a phase 1/2 study to determine the recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics, and immunogenicity, of pepinemab in pediatric patients with recurrent/refractory solid tumors, and activity in osteosarcoma. EXPERIMENTAL DESIGN: Pepinemab was administered intravenously on Days 1 and 15 of a 28-day cycle at 20 mg/kg, the adult RP2D. Part A (phase 1) used a Rolling 6 design; Part B (phase 2) used a Simon 2-stage design in patients with osteosarcoma. Pharmacokinetics and target saturation were evaluated in peripheral blood. RESULTS: Pepinemab (20 mg/kg) was well tolerated and no dose-limiting toxicities were observed during Part A. There were no objective responses. Two patients with osteosarcoma achieved disease control and prolonged stable disease. Pepinemab pharmacokinetics were similar to adults. CONCLUSIONS: Pepinemab (20 mg/kg) is safe, well tolerated and resulted in adequate and sustained target saturation in pediatric patients. Encouraging disease control in two patients with osteosarcoma warrants further investigation with novel combination strategies to modulate the tumor microenvironment and antitumor immune response. CLINICAL TRIAL REGISTRY: This trial is registered as NCT03320330 at Clinicaltrials.gov. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Neoplasm Recurrence, Local , Neoplasms , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Drug Resistance, Neoplasm , Maximum Tolerated Dose , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasms/drug therapy , Osteosarcoma/drug therapy , Osteosarcoma/pathology
10.
Eur J Drug Metab Pharmacokinet ; 49(3): 277-293, 2024 May.
Article in English | MEDLINE | ID: mdl-38461486

ABSTRACT

The calcitonin gene-related peptide transmission was the target for recent development of drugs that effectively prevent attacks of both episodic and chronic migraine. The aim of this narrative review was to offer deeper insight into pharmacokinetics of monoclonal antibodies approved for prevention of migraine attacks. For this narrative review, relevant literature was searched for in MEDLINE and Google Scholar databases, covering periods 1966-2023 and 2006-2023, respectively. The ClinicalTrials.gov database was also searched for relevant clinical studies whose results had not been published previously in medical journals, covering the period 2000-2023. The monoclonal antibodies from this group are distributed mainly in the plasma and part of the extracellular space; they are neither metabolized in the liver nor excreted via the kidneys. The elimination of galcanezumab, eptinezumab and fremanezumab takes place only by a non-specific linear process via the reticuloendothelial system in the liver, while erenumab is eliminated by a non-specific process and by a specific, saturable process because of binding to receptors located on the cell membrane. Since the elimination processes do not have a large capacity, the half-life is about 2 weeks for erenumab and about 4 weeks for other monoclonal antibodies. Variability in the pharmacokinetics of these monoclonal antibodies is small in different subpopulations, and body weight is the only parameter to consider when choosing the dose of these drugs.


Subject(s)
Antibodies, Monoclonal , Calcitonin Gene-Related Peptide , Migraine Disorders , Humans , Migraine Disorders/drug therapy , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Calcitonin Gene-Related Peptide/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacokinetics , Animals
11.
Clin Pharmacol Ther ; 115(6): 1418-1427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488354

ABSTRACT

A proof-of-concept study with the combination of guselkumab and golimumab in patients with ulcerative colitis (UC) has shown that the combination therapy resulted in greater efficacy than the individual monotherapies. The current analysis evaluated the pharmacokinetics (PK) and immunogenicity of guselkumab and golimumab in both the combination therapy and individual monotherapies. Blood samples were collected to evaluate serum concentrations and immunogenicity of guselkumab and golimumab. Population PK (PopPK) models were developed to assess the effects of combination therapy and other potential covariates on the PK of guselkumab and golimumab. The guselkumab PK was comparable between monotherapy and combination therapy, whereas golimumab concentrations were slightly higher with combination therapy. The anti-guselkumab antibody incidence was low with both monotherapy and combination therapy, and guselkumab immunogenicity did not impact the clearance. Conversely, the anti-golimumab antibody incidence with combination therapy was lower than that for monotherapy. PopPK analysis suggested that the slightly higher golimumab concentrations with combination therapy were partially due to lower immunogenicity and thus lower clearance with combination therapy. C-reactive protein (CRP) was also a significant covariate on golimumab clearance. The greater improvement of inflammation with combination therapy, as shown by reductions in CRP, may have also contributed to the higher golimumab concentrations. Combination therapy slightly decreased the clearance of golimumab, but not guselkumab clearance, in patients with UC. Lower immunogenicity and greater improvement of inflammation with combination therapy were potential mechanisms for slightly increased golimumab concentrations with combination therapy as compared with golimumab monotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Colitis, Ulcerative , Drug Interactions , Drug Therapy, Combination , Adult , Female , Humans , Male , Middle Aged , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Gastrointestinal Agents/pharmacokinetics , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/immunology , Models, Biological , Proof of Concept Study , Severity of Illness Index , Treatment Outcome
12.
Blood Adv ; 8(11): 2813-2824, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38551806

ABSTRACT

ABSTRACT: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hematologic disease of uncontrolled terminal complement activation leading to intravascular hemolysis, thrombotic events and increased morbidity and mortality. This phase 3, open-label, single-arm, multicenter study evaluated ravulizumab treatment in eculizumab-naive or -experienced pediatric patients (aged <18 years) with PNH over a 26-week primary evaluation period (PEP) and 4-year extension period (EP). Patients included in the study received weight-based intravenous ravulizumab dosing. Primary end points were pharmacokinetic and pharmacodynamic parameters to confirm complement component 5 (C5) inhibition by ravulizumab; secondary end points assessed the efficacy (including percentage change in lactate dehydrogenase levels over time) and safety of ravulizumab. Thirteen patients, 5 (38.5%) eculizumab-naive and 8 (61.5%) eculizumab-experienced, were enrolled. Ravulizumab Ctrough levels were above the pharmacokinetic threshold of 175 µg/mL in the PEP and EP except in 1 patient. At the end of the study, pre- and post-infusion mean ± standard deviation serum ravulizumab concentrations were 610.50 ± 201.53 µg/mL and 518.29 ± 109.67 µg/mL for eculizumab-naive and eculizumab-experienced patients, respectively. After the first ravulizumab infusion, serum-free C5 concentrations were <0.5 µg/mL in both cohorts until the end of the study (0.061 ± 0.021 µg/mL and 0.061 ± 0.018 µg/mL for eculizumab-naive and eculizumab-experienced patients, respectively). Compared with baseline, ravulizumab improved and maintained efficacy outcomes in both groups. Ravulizumab had an acceptable safety profile with no new safety signals identified, and provided immediate, complete, and sustained terminal complement inhibition, translating to clinical benefit for pediatric patients with PNH. This trial was registered at www.ClinicalTrials.gov as #NCT03406507.


Subject(s)
Antibodies, Monoclonal, Humanized , Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Child , Female , Male , Adolescent , Treatment Outcome , Child, Preschool , Complement Inactivating Agents/pharmacokinetics , Complement Inactivating Agents/therapeutic use , Complement Inactivating Agents/adverse effects , Complement Inactivating Agents/administration & dosage , Complement C5/antagonists & inhibitors
13.
Clin Pharmacol Drug Dev ; 13(6): 665-671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523487

ABSTRACT

Tozorakimab is a high-affinity human immunoglobulin G1 monoclonal antibody that neutralizes interleukin (IL)-33, an IL-1 family cytokine. This phase 1, single-center, randomized, double-blind, placebo-controlled, single ascending dose study (NCT05070312) evaluated tozorakimab in a healthy Chinese population. Outcomes included the characterization of the pharmacokinetic (PK) profile and immunogenicity of tozorakimab. Safety outcomes included treatment-emergent adverse events (TEAEs) and clinical laboratory, electrocardiogram, and vital sign parameters. Healthy, non-smoking, male, and female Chinese participants aged 18-45 years with a body mass index 19-24 kg/m2 were enrolled. In total, 36 participants across 2 cohorts of 18 participants were randomized 2:1 to receive a single subcutaneous dose of tozorakimab (300 mg [2 mL] or 600 mg [4 mL]) or matching placebo (2 or 4 mL). Tozorakimab showed dose-dependent serum PK concentrations with an approximate monophasic distribution in serum over time and a maximum observed peak concentration of 20.1 and 33.7 µg/mL in the 300- and 600-mg cohorts, respectively. No treatment-emergent anti-drug antibodies for tozorakimab were observed in any of the participants. There were no clinically relevant trends in the occurrence of TEAEs across the treatment groups. There were no clinically relevant trends over time in clinical laboratory (hematology, clinical chemistry, and urinalysis), electrocardiogram, or vital sign parameters in any treatment group. Overall, tozorakimab demonstrated dose-dependent systemic exposure in healthy Chinese participants and was well tolerated, with no safety concerns identified in this study.


Subject(s)
Antibodies, Monoclonal, Humanized , Asian People , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Double-Blind Method , Female , Male , Adult , Injections, Subcutaneous , Young Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , Adolescent , China , East Asian People
14.
Clin Transl Sci ; 17(3): e13769, 2024 03.
Article in English | MEDLINE | ID: mdl-38515348

ABSTRACT

Tislelizumab, an anti-programmed cell death protein 1 monoclonal antibody, has demonstrated improved survival benefits over standard of care for multiple cancer indications. We present the clinical rationale and data supporting tislelizumab dose recommendation in patients with advanced tumors. The phase I, first-in-human, dose-finding BGB-A317-001 study (data cutoff [DCO]: August 2017) examined the following tislelizumab dosing regimens: 0.5-10 mg/kg every 2 weeks (q2w), 2-5 mg/kg q2w or q3w, and 200 mg q3w. Similar objective response rates (ORRs) were reported in the 2 and 5 mg/kg q2w or q3w cohorts. Safety outcomes (grade ≥3 adverse events [AEs], AEs leading to dose modification/discontinuation, immune-mediated AEs, and infusion-related reactions) were generally comparable across the dosing range examined. These results, alongside the convenience of a fixed q3w dose, formed the basis of choosing 200 mg q3w as the recommended dosing regimen for further clinical use. Pooled exposure-response (E-R) analyses by logistic regression using data from study BGB-A317-001 (DCO: August 2020) and three additional phase I/II studies (DCOs: 2018-2020) showed no statistically significant correlation between tislelizumab pharmacokinetic exposure and ORR across multiple solid tumor types or classical Hodgkin's lymphoma, nor was exposure associated with any of the safety end points evaluated over the dose range tested. Hence, tislelizumab showed a relatively flat E-R relationship. Overall, the totality of data, including efficacy, safety, and E-R analyses, together with the relative convenience of a fixed q3w dose, provided clinical rationale for the recommended dosing regimen of tislelizumab 200 mg q3w for multiple cancer indications.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hematologic Neoplasms , Neoplasms , Humans , Antibodies, Monoclonal, Humanized/pharmacokinetics , Neoplasms/pathology
15.
Br J Clin Pharmacol ; 90(5): 1312-1321, 2024 May.
Article in English | MEDLINE | ID: mdl-38373846

ABSTRACT

AIMS: Eculizumab is a monoclonal antibody targeting complement protein C5 used in renal diseases. As recommended dosing regimen leads to unnecessarily high concentrations in some patients, tailored dosing therapeutic drug monitoring was proposed to reduce treatment cost. The objectives of the present work were (i) to investigate the target-mediated elimination of eculizumab and (ii) whether a pharmacokinetic model integrating a nonlinear elimination allows a better prediction of eculizumab concentrations than a linear model. METHODS: We analysed 377 eculizumab serum concentrations from 44 patients treated for atypical haemolytic uraemic syndrome and C3 glomerulopathy with a population pharmacokinetic approach. Critical concentrations (below which a non-log-linear decline of concentration over time is evidenced) were computed to estimate the relevance of the target-mediated elimination. Simulations of dosing regimens were then performed to predict probabilities of target attainment (i.e. trough >100 mg/L). RESULTS: Pharmacokinetics of eculizumab was nonlinear and followed a mixture of first-order (CL = 1.318 mL/day/kg) and Michaelis-Menten elimination (Vmax = 26.07 mg/day, Km = 24.06 mg/L). Volume of distribution (72.39 mL/kg) and clearance were weight-dependent. Critical concentrations (Vmax/CL) ranged from 144.7 to 759.7 mg/L and were inversely related to body weight (P = .013). Nonlinearity was thus noticeable at therapeutic concentrations. Simulations predicted that 1200 mg of eculizumab every 21 days would allow 85% and 76% of patients to maintain a therapeutic exposure, for 50 or 90 kg body weight, respectively. CONCLUSIONS: Our study investigates the nonlinear elimination of eculizumab and discusses the importance of accounting for eculizumab target-mediated elimination in therapeutic drug monitoring.


Subject(s)
Antibodies, Monoclonal, Humanized , Atypical Hemolytic Uremic Syndrome , Drug Monitoring , Models, Biological , Nonlinear Dynamics , Humans , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Female , Middle Aged , Adult , Drug Monitoring/methods , Atypical Hemolytic Uremic Syndrome/drug therapy , Aged , Dose-Response Relationship, Drug , Young Adult , Complement Inactivating Agents/pharmacokinetics , Complement Inactivating Agents/administration & dosage , Computer Simulation , Adolescent
16.
Clin Pharmacol Drug Dev ; 13(6): 621-630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323727

ABSTRACT

Osteoarthritis (OA) pain management options are currently limited. Fasinumab, an anti-nerve growth factor monoclonal antibody, has been investigated in healthy volunteers and patients with OA-related pain, among other conditions. Data from 12 Phase I-III clinical trials of 92 healthy volunteers and 7430 patients with OA were used to develop a population pharmacokinetic model to characterize fasinumab concentration-time profiles and assess the covariates' effect on fasinumab pharmacokinetic parameters. Participants received single or repeated fasinumab doses intravenously (IV)/subcutaneously (SC), based on body weight (0.03-1 mg/kg IV or 0.1-0.3 mg/kg SC)/fixed dose (9-12 mg IV or 1-12 mg SC). Fasinumab concentration-time data following IV and SC administration in healthy volunteers and patients with OA-related pain were adequately described by a 2-compartment model. Bioavailability increased with higher doses; estimated at 55.1% with 1 mg SC dose, increasing in a greater-than-proportional manner above this. Body weight had the largest predicted impact on fasinumab steady-state exposures, participants at the 5th and 95th percentiles had a 43%-45% higher/22%-23% lower exposure versus reference, respectively. Other covariates had small but clinically irrelevant impacts.


Subject(s)
Antibodies, Monoclonal, Humanized , Healthy Volunteers , Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Male , Female , Middle Aged , Adult , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/complications , Aged , Osteoarthritis, Hip/drug therapy , Osteoarthritis, Hip/complications , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Models, Biological , Pain/drug therapy , Biological Availability , Injections, Subcutaneous , Young Adult , Dose-Response Relationship, Drug , Clinical Trials, Phase III as Topic
17.
Farm. hosp ; 48(1): 16-22, ene. - feb. 2024. graf, tab
Article in Spanish | IBECS | ID: ibc-229468

ABSTRACT

Objetivo analizar y describir las concentraciones de eculizumab y el bloqueo del complemento en los pacientes con síndrome hemolítico urémico atípico (SHUa) y glomerulopatía C3, y definir un margen terapéutico donde se alcance una alta probabilidad de conseguir eficacia terapéutica. Métodos estudio observacional, ambispectivo y multicéntrico que incluyó pacientes adultos y pediátricos diagnosticados de SHUa y glomerulopatía C3 desde septiembre de 2020 hasta octubre de 2022 en 5 hospitales de España. Eculizumab se administró a las dosis recomendadas por la ficha técnica. Se determinaron las concentraciones pre y posdosis de eculizumab, así como del bloqueo de la vía clásica del complemento (CH50). Se recogieron variables sociodemográficas, analíticas y clínicas, y se calcularon los parámetros farmacocinéticos. Para establecer el punto de corte de las concentraciones de eculizumab que predecían el bloqueo del complemento se realizó un análisis de curvas ROC (Receiver Operating Characteristic). Se utilizó el test de Kruskal-Wallis para contrastar las diferencias en distintos parámetros según las concentraciones de eculizumab. Resultados se incluyeron 25 pacientes, 19 adultos (76,0%) y 6 pediátricos (24,0%), con edades medianas de 43,4 (RIC 35,7-48,8) y 10,1 (RIC 9,6-11,3) años, respectivamente. De ellos, 22 (88,0%) pacientes fueron diagnosticados con SHUa y 3 (12,0%) con glomerulopatía C3. Se determinaron un total de 111 concentraciones de eculizumab. Las concentraciones predosis y posdosis medias detectadas durante la fase de mantenimiento fueron 243,8 (SD 240,6) μg/ml y 747,4 (SD 444,3) μg/ml, respectivamente (AU)


Objective The objective of the study was to analyze and describe the concentrations of eculizumab and the complement blockade in patients with atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy, and to define a therapeutic margin where there is a high probability of achieving therapeutic efficacy. Methods Observational, ambispective and multicenter study that included adult and pediatric patients diagnosed with aHUS and C3 glomerulopathy from September 2020 to October 2022 in five hospitals in Spain. Eculizumab was administered at the doses recommended by the data sheet according to the European Medicines Agency (EMA). Pre-dose and post-dose concentrations of eculizumab were determined, as well as blockade of the classical complement pathway (CH50). Sociodemographic and clinical data were collected, and pharmacokinetic parameters were calculated. To establish the cut-off point for eculizumab concentrations that predicted complement blockade, Receiver Operating Characteristic (ROC) curve analysis was performed. Lastly, the Kruskal-Wallis test was used to contrast the differences in different parameters according to eculizumab concentrations. Results Twenty-five patients were included, 19 adults (76.0%) and 6 pediatrics (24.0%), with median ages of 43.4 (IQR 35.7-48.8) and 10.1 (IQR 9.6-11.3) years, respectively. Of these, 22 (88.0%) patients were diagnosed with aHUS and 3 (12.0%) with C3 glomerulopathy. A total of 111 eculizumab concentrations were determined (AU)


Subject(s)
Humans , Child , Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Hemolytic-Uremic Syndrome/drug therapy , Drug Monitoring , Glomerulonephritis, Membranoproliferative/drug therapy
18.
Clin Pharmacol Drug Dev ; 13(2): 180-189, 2024 02.
Article in English | MEDLINE | ID: mdl-38191982

ABSTRACT

Elezanumab is a fully human monoclonal antibody, which is directed against repulsive guidance molecule A. The safety, tolerability, pharmacokinetics (PK), and immunogenicity of elezanumab were assessed in 2 Phase 1 clinical studies. The objective of this study was to assess the PK, safety, tolerability, and immunogenicity following intravenous infusion of elezanumab in healthy adult Japanese, Han Chinese, and Caucasian participants as well as Western participants from the single-ascending-dose study. Elezanumab exposures were approximately 20% higher in Japanese and Han Chinese participants compared to White participants without controlling for body weight. After statistically controlling for body weight by including it as a covariate, the PK of elezanumab in White participants were comparable to those in Japanese and Han Chinese participants. The clinical implications of these exposure differences are yet to be determined. All adverse events were assessed by the investigator as having no reasonable possibility of being related to the study drugs and were mild in severity. No positive immunogenicity effect was observed that impacted elezanumab exposure or safety.


Subject(s)
Antibodies, Monoclonal, Humanized , East Asian People , White People , Adult , Humans , Antibodies, Monoclonal, Humanized/pharmacokinetics , Body Weight
19.
Ther Drug Monit ; 46(3): 410-414, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38287880

ABSTRACT

BACKGROUND: Tocilizumab in the treatment of rheumatoid arthritis (RA) is a potential candidate for concentration-guided tapering because the standard dose of tocilizumab results in a wide range of serum concentrations, usually above the presumed therapeutic window, and an exposure-response relationship has been described. However, no clinical trials have been published to date on this subject. Therefore, the objective of this study was to assess the feasibility of the tapering of intravenous (iv) tocilizumab with the use of a pharmacokinetic model-based algorithm in RA patients. METHODS: A randomized controlled trial with a double-blind design and follow-up of 24 weeks was conducted. RA patients who received the standard of tocilizumab for at least the past 24 weeks, which is 8 mg/kg every 4 weeks, were included. Patients with a tocilizumab serum concentration above 5 mg/L at trough were randomized between concentration-guided dose tapering, referred to as therapeutic drug monitoring (TDM), or the standard 8 mg/kg dose. In the TDM group, the tocilizumab dose was tapered with a recently published model-based algorithm to achieve a target concentration of 4-6 mg/L after 20 weeks of dose tapering. RESULTS: Twelve RA patients were included and 10 were randomized between the TDM and standard dose group. The study was feasible regarding the predefined feasibility criteria and patients had a positive attitude toward therapeutic drug monitoring. In the TDM group, the tocilizumab trough concentration within patients decreased on average by 24.5 ± 18.3 mg/L compared with a decrease of 2.8 ± 12 mg/L in the standard dose group. None of the patients in the TDM group reached the drug range of 4-6 mg/L. Instead, tocilizumab concentrations of 1.6 and 1.5 mg/L were found for the 2 patients who completed follow-up on the tapered dose. No differences in RA disease activity were observed between the 2 study groups. CONCLUSIONS: This study was the first to show that it is feasible to apply a dose-reduction algorithm based on a pharmacokinetic model in clinical practice. However, the current algorithm needs to be optimized before it can be applied on a larger scale.


Subject(s)
Algorithms , Antibodies, Monoclonal, Humanized , Arthritis, Rheumatoid , Drug Monitoring , Humans , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Rheumatoid/drug therapy , Double-Blind Method , Female , Middle Aged , Male , Drug Monitoring/methods , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/blood , Drug Tapering/methods , Feasibility Studies , Dose-Response Relationship, Drug , Aged , Adult
20.
J Pharm Biomed Anal ; 240: 115964, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38219442

ABSTRACT

Approximately 25% of breast cancer patients with HER2 overexpression tend to have a high risk of disease progression and death. Various HER2-targeting therapies have been approved for treatment. Recently, a novel antibody-drug conjugate, SHR-A1201, is being researched and developed. For the pharmacokinetic study of SHR-A1201, suitable bioanalytical methods are needed for quantifying unconjugated cytotoxin, cytotoxin-conjugated antibodies and total antibodies. In this research, bioanalytical methods involving a highly sensitive LC-MS/MS assay for unconjugated cytotoxic payload DM1 in human plasma, ELISA strategies for DM1-conjugated trastuzumab and total trastuzumab in human serum were developed, validated and successfully applied to a phase I dose-escalation pharmacokinetic study of SHR-A1201. The pharmacokinetic properties and exposure-to-dose proportionality was evaluated for SHR-A1201. According to the bioanalytical method validation guidance, the bioanalytical methods were fully validated and the validation results met the acceptance criteria. The nonspecific binding of DM1 and dimer was avoided for the LC-MS/MS assay. In the dose-escalation pharmacokinetic study of SHR-A1201, a potential dose-proportional pharmacokinetics was observed over the dose from 1.2 mg/kg to 4.8 mg/kg. The validated bioanalytical strategies are robust and reproducible and these bioanalytical methods will contribute to better understanding of the pharmacokinetic properties of SHR-A1201.


Subject(s)
Breast Neoplasms , Immunoconjugates , Maytansine , Humans , Female , Ado-Trastuzumab Emtansine , Immunoconjugates/therapeutic use , Chromatography, Liquid , Antibodies, Monoclonal, Humanized/pharmacokinetics , Receptor, ErbB-2/metabolism , Tandem Mass Spectrometry , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cytotoxins
SELECTION OF CITATIONS
SEARCH DETAIL
...