Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.455
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2400163121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830098

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high fatality rate of up to 30% caused by SFTS virus (SFTSV). However, no specific vaccine or antiviral therapy has been approved for clinical use. To develop an effective treatment, we isolated a panel of human monoclonal antibodies (mAbs). SF5 and SF83 are two neutralizing mAbs that recognize two viral glycoproteins (Gn and Gc), respectively. We found that their epitopes are closely located, and we then engineered them as several bispecific antibodies (bsAbs). Neutralization and animal experiments indicated that bsAbs display more potent protective effects than the parental mAbs, and the cryoelectron microscopy structure of a bsAb3 Fab-Gn-Gc complex elucidated the mechanism of protection. In vivo virus passage in the presence of antibodies indicated that two bsAbs resulted in less selective pressure and could efficiently bind to all single parental mAb-escape mutants. Furthermore, epitope analysis of the protective mAbs against SFTSV and RVFV indicated that they are all located on the Gn subdomain I, where may be the hot spots in the phleboviruses. Collectively, these data provide potential therapeutic agents and molecular basis for the rational design of vaccines against SFTSV infection.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Phlebovirus , Animals , Antibodies, Bispecific/immunology , Mice , Antibodies, Neutralizing/immunology , Phlebovirus/immunology , Humans , Antibodies, Viral/immunology , Glycoproteins/immunology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Disease Models, Animal , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/prevention & control
2.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831363

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Subject(s)
Antibodies, Monoclonal , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Porcine epidemic diarrhea virus/immunology , Antibodies, Monoclonal/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Swine , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral/immunology , Swine Diseases/virology , Swine Diseases/immunology , HEK293 Cells , Humans , Recombinant Proteins/immunology , Mice, Inbred BALB C , Mice , Fluorescent Antibody Technique, Indirect/veterinary
3.
Front Immunol ; 15: 1341389, 2024.
Article in English | MEDLINE | ID: mdl-38698845

ABSTRACT

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Subject(s)
Antibodies, Monoclonal , Antibody-Producing Cells , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibody-Producing Cells/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Antibodies, Viral/immunology , Female
4.
MAbs ; 16(1): 2324485, 2024.
Article in English | MEDLINE | ID: mdl-38700511

ABSTRACT

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Humans , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/immunology , Mass Spectrometry/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Tissue Distribution , Neoplasms/drug therapy , Neoplasms/immunology
5.
Appl Microbiol Biotechnol ; 108(1): 327, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717623

ABSTRACT

Regulatory T cells (Tregs) are a subset of T cells participating in a variety of diseases including mycoplasmal pneumonia, contagious ecthyma, and so on. The role of Tregs in goat contagious ecthyma is not completely understood due to the lack of species-specific antibodies. Here, we developed a combination of CD4 and CD25 fluorescence monoclonal antibodies (mAb) to recognize goat Tregs and assessed its utility in flow cytometry, immunofluorescence staining. Using immunofluorescence staining, we found that the frequency of Treg cells was positively correlated with the viral load during orf virus infection. These antibodies could serve as important tools to monitor Tregs during orf virus infection in goats. KEY POINTS: • A combination of fluorescent mAbs (C11 and D12) was prepared for the detection of goat Tregs. • C11 and D12 are effective in flow cytometry, immunofluorescence staining, and C11 has excellent species specificity. • The frequency of Treg cells was positively correlated with the viral load during orf virus infection.


Subject(s)
Antibodies, Monoclonal , Flow Cytometry , Goats , T-Lymphocytes, Regulatory , Viral Load , Animals , T-Lymphocytes, Regulatory/immunology , Antibodies, Monoclonal/immunology , Ecthyma, Contagious/diagnosis , Ecthyma, Contagious/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Orf virus/immunology , Fluorescent Antibody Technique/methods , CD4 Antigens/immunology , Goat Diseases/immunology , Goat Diseases/virology , Goat Diseases/diagnosis
6.
Sci Rep ; 14(1): 10608, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719911

ABSTRACT

Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.


Subject(s)
Antibodies, Monoclonal , Antibody Affinity , Peptide Library , Humans , Antibodies, Monoclonal/immunology , Mutagenesis
7.
PLoS One ; 19(5): e0302865, 2024.
Article in English | MEDLINE | ID: mdl-38723016

ABSTRACT

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H1N1 Subtype , Neuraminidase , Neuraminidase/immunology , Neuraminidase/metabolism , Neuraminidase/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Influenza A Virus, H1N1 Subtype/immunology , Humans , Animals , Antibodies, Viral/immunology , Mice , Influenza A Virus, H5N1 Subtype/immunology , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Viral Proteins/immunology , Viral Proteins/metabolism , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology
8.
Front Immunol ; 15: 1340619, 2024.
Article in English | MEDLINE | ID: mdl-38711498

ABSTRACT

To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Animals , Mice , Hepatitis B Surface Antigens/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Antibodies, Monoclonal/immunology , Immunotherapy, Adoptive , Hepatitis B/immunology , Hepatitis B/virology , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , T-Lymphocytes/immunology
9.
Virus Res ; 345: 199383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697296

ABSTRACT

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Protein Binding , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Mice , Neutralization Tests
10.
Virus Res ; 345: 199402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772446

ABSTRACT

H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Humans , Chick Embryo , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control
11.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793674

ABSTRACT

The Nipah virus (NiV) and the Hendra virus (HeV) are highly pathogenic zoonotic diseases that can cause fatal infections in humans and animals. Early detection is critical for the control of NiV and HeV infections. We present the development of two antigen-detection ELISAs (AgELISAs) using the henipavirus-receptor EphrinB2 and monoclonal antibodies (mAbs) to detect NiV and HeV. The NiV AgELISA detected only NiV, whereas the NiV/HeV AgELISA detected both NiV and HeV. The diagnostic specificities of the NiV AgELISA and the NiV/HeV AgELISA were 100% and 97.8%, respectively. Both assays were specific for henipaviruses and showed no cross-reactivity with other viruses. The AgELISAs detected NiV antigen in experimental pig nasal wash samples taken at 4 days post-infection. With the combination of both AgELISAs, NiV can be differentiated from HeV. Complementing other henipavirus detection methods, these two newly developed AgELISAs can rapidly detect NiV and HeV in a large number of samples and are suitable for use in remote areas where other tests are not available.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Ephrin-B2 , Hendra Virus , Henipavirus Infections , Nipah Virus , Hendra Virus/immunology , Animals , Nipah Virus/immunology , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay/methods , Ephrin-B2/metabolism , Ephrin-B2/immunology , Henipavirus Infections/diagnosis , Henipavirus Infections/virology , Henipavirus Infections/immunology , Antibodies, Viral/immunology , Swine , Humans , Sensitivity and Specificity , Receptors, Virus/metabolism , Antigens, Viral/immunology
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710518

ABSTRACT

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Subject(s)
Antibodies, Monoclonal , Hybridomas , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Humans , Mice , HEK293 Cells , Hybridomas/immunology , Enzyme-Linked Immunosorbent Assay , Antibody Specificity/immunology , Female , Mice, Inbred BALB C
13.
BMC Vet Res ; 20(1): 191, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734611

ABSTRACT

BACKGROUND: Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS: Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION: Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Epitopes , Mice, Inbred BALB C , Viral Proteins , African Swine Fever Virus/immunology , Antibodies, Monoclonal/immunology , Animals , Epitopes/immunology , Mice , Viral Proteins/immunology , Antibodies, Viral/immunology , Swine , African Swine Fever/immunology , African Swine Fever/virology , Female
14.
Front Immunol ; 15: 1395030, 2024.
Article in English | MEDLINE | ID: mdl-38736885

ABSTRACT

Introduction: The end of gestation, ensuing parturition, and the neonatal period represent highly dynamic phases for immunological changes in both mother and offspring. The regulation of innate immune cells at the maternal-fetal interface during late term pregnancy, after birth, and during microbial colonization of the neonatal gut and other mucosal surfaces, is crucial for controlling inflammation and maintaining homeostasis. Innate immune cells and mucosal epithelial cells express antileukoproteinase (SLPI), which has anti-inflammatory and anti-protease activity that can regulate cellular activation. Methods: Here, we developed and validated new monoclonal antibodies (mAbs) to characterize SLPI for the first time in horses. Peripheral blood and mucosal samples were collected from healthy adults horses and a cohort of mares and their foals directly following parturition to assess this crucial stage. Results: First, we defined the cell types producing SLPI in peripheral blood by flow cytometry, highlighting the neutrophils and a subset of the CD14+ monocytes as SLPI secreting immune cells. A fluorescent bead-based assay was developed with the new SLPI mAbs and used to establish baseline concentrations for secreted SLPI in serum and secretion samples from mucosal surfaces, including saliva, nasal secretion, colostrum, and milk. This demonstrated constitutive secretion of SLPI in a variety of equine tissues, including high colostrum concentrations. Using immunofluorescence, we identified production of SLPI in mucosal tissue. Finally, longitudinal sampling of clinically healthy mares and foals allowed monitoring of serum SLPI concentrations. In neonates and postpartum mares, SLPI peaked on the day of parturition, with mares returning to the adult normal within a week and foals maintaining significantly higher SLPI secretion until three months of age. Conclusion: This demonstrated a physiological systemic change in SLPI in both mares and their foals, particularly at the time around birth, likely contributing to the regulation of innate immune responses during this critical period.


Subject(s)
Animals, Newborn , Animals , Horses/immunology , Female , Pregnancy , Up-Regulation , Antibodies, Monoclonal/immunology , Secretory Leukocyte Peptidase Inhibitor/metabolism , Colostrum/immunology , Immunity, Innate
15.
Methods Mol Biol ; 2775: 307-328, 2024.
Article in English | MEDLINE | ID: mdl-38758326

ABSTRACT

The importance of humoral immunity to fungal infections remains to be elucidated. In cryptococcosis, patients that fail to generate antibodies against antigens of the fungus Cryptococcus neoformans are more susceptible to the disease, demonstrating the importance of these molecules to the antifungal immune response. Historically, antibodies against C. neoformans have been applied in diagnosis, therapeutics, and as important research tools to elucidate fungal biology. Throughout the process of generating monoclonal antibodies (mAbs) from a single B-cell clone and targeting a single epitope, several immunization steps might be required for the detection of responsive antibodies to the antigen of interest in the serum. This complex mixture of antibodies comprises the polyclonal antibodies. To obtain mAbs, B-lymphocytes are harvested (from spleen or peripheral blood) and fused with tumor myeloma cells, to generate hybridomas that are individually cloned and specifically screened for mAb production. In this chapter, we describe all the necessary steps, from the immunization to polyclonal antibody harvesting, hybridoma generation, and mAb production and purification. Additionally, we discuss new cutting-edge approaches for generating interspecies mAbs, such as humanized mAbs, or for similar species in distinct host backgrounds.


Subject(s)
Antibodies, Fungal , Antibodies, Monoclonal , Cryptococcus neoformans , Hybridomas , Cryptococcus neoformans/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Animals , Humans , Hybridomas/immunology , Antibodies, Fungal/immunology , Antibodies, Fungal/isolation & purification , Mice , B-Lymphocytes/immunology , Cryptococcosis/immunology , Cryptococcosis/diagnosis , Antigens, Fungal/immunology , Immunization
16.
Methods Mol Biol ; 2775: 239-255, 2024.
Article in English | MEDLINE | ID: mdl-38758322

ABSTRACT

One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Enzyme-Linked Immunosorbent Assay , Polysaccharides , Enzyme-Linked Immunosorbent Assay/methods , Cryptococcus neoformans/immunology , Cryptococcosis/diagnosis , Cryptococcosis/microbiology , Cryptococcosis/immunology , Polysaccharides/analysis , Polysaccharides/immunology , Humans , Antigens, Fungal/immunology , Antigens, Fungal/analysis , Fungal Polysaccharides/immunology , Fungal Polysaccharides/analysis , Antibodies, Monoclonal/immunology , Antibodies, Fungal/immunology
17.
Methods Mol Biol ; 2804: 127-138, 2024.
Article in English | MEDLINE | ID: mdl-38753145

ABSTRACT

Within the vast field of medical biotechnology, the biopharmaceutical industry is particularly fast-growing and highly competitive, so reducing time and costs associated to process optimization becomes instrumental to ensure speed to market and, consequently, profitability. The manufacturing of biopharmaceutical products, namely, monoclonal antibodies (mAbs), relies mostly on mammalian cell culture processes, which are highly dynamic and, consequently, difficult to optimize. In this context, there is currently an unmet need of analytical methods that can be integrated at-line in a bioreactor, for systematic monitoring and quantification of key metabolites and proteins. Microfluidic-based assays have been extensively and successfully applied in the field of molecular diagnostics; however, this technology remains largely unexplored for Process Analytical Technology (PAT), despite holding great potential for the at-line measurement of different analytes in bioreactor processes, combining low reagent/molecule consumption with assay sensitivity and rapid turnaround times.Here, the fabrication and handling of a microfluidic cartridge for protein quantification using bead-based affinity assays is described. The device allows geometrical multiplexed immunodetection of specific protein analytes directly from bioreactor samples within 2.5 h and minimal hands-on time. As a proof-of-concept, quantification of Chinese hamster ovary (CHO) host cell proteins (HCP) as key impurities, IgG as product of interest, and lactate dehydrogenase (LDH) as cell viability marker was demonstrated with limits of detection (LoD) in the low ng/mL range. Negligible matrix interference and no cross-reactivity between the different immunoassays on chip were found. The results highlight the potential of the miniaturized analytical method for PAT at reduced cost and complexity in comparison with sophisticated instruments that are currently the state-of-the-art in this context.


Subject(s)
Cricetulus , CHO Cells , Animals , Antibodies, Monoclonal/immunology , Bioreactors , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Microfluidics/methods , Microfluidics/instrumentation , Cricetinae
18.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
19.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38698660

ABSTRACT

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Subject(s)
Epitope Mapping , Receptor, ErbB-2 , Trastuzumab , Humans , Epitope Mapping/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/immunology , Trastuzumab/chemistry , Alkylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Halogenation , Protein Footprinting/methods , Antigen-Antibody Complex/chemistry
20.
Front Immunol ; 15: 1382576, 2024.
Article in English | MEDLINE | ID: mdl-38779661

ABSTRACT

Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.


Subject(s)
Antibodies, Monoclonal , Programmed Cell Death 1 Receptor , Dogs , Animals , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Antibodies, Monoclonal/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Epitopes/immunology , Dog Diseases/immunology , Dog Diseases/drug therapy , Protein Binding , Neoplasms/immunology , Neoplasms/veterinary , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...