Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 558
Filter
1.
Nature ; 626(7998): 385-391, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096903

ABSTRACT

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Animals , Humans , Administration, Intranasal , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cytokines/immunology , Immunity, Mucosal/immunology , Immunization, Secondary/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Injections, Intramuscular , Killer Cells, Natural/immunology , Lung/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Trachea/immunology , Trachea/virology
2.
Viruses ; 14(7)2022 07 09.
Article in English | MEDLINE | ID: mdl-35891490

ABSTRACT

The novel severe acute respiratory syndrome (SARS) coronavirus, SARS-CoV-2, is responsible for the global COVID-19 pandemic. Effective interventions are urgently needed to mitigate the effects of COVID-19 and likely require multiple strategies. Egg-extracted antibody therapies are a low-cost and scalable strategy to protect at-risk individuals from SARS-CoV-2 infection. Commercial laying hens were hyperimmunized against the SARS-CoV-2 S1 protein using three different S1 recombinant proteins and three different doses. Sera and egg yolk were collected at three and six weeks after the second immunization for enzyme-linked immunosorbent assay and plaque-reduction neutralization assay to determine antigen-specific antibody titers and neutralizing antibody titers, respectively. In this study we demonstrate that hens hyperimmunized against the SARS-CoV-2 recombinant S1 and receptor binding domain (RBD) proteins produced neutralizing antibodies against SARS-CoV-2. We further demonstrate that antibody production was dependent on the dose and type of antigen administered. Our data suggests that antibodies purified from the egg yolk of hyperimmunized hens can be used as immunoprophylaxis in humans at risk of exposure to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Egg Yolk , SARS-CoV-2 , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/prevention & control , Chickens , Egg Yolk/immunology , Female , Spike Glycoprotein, Coronavirus
4.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217639

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
5.
Signal Transduct Target Ther ; 7(1): 44, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140196

ABSTRACT

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Models, Molecular , Neutralization Tests , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
Sci Rep ; 12(1): 3040, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197516

ABSTRACT

The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Antibodies, Protozoan/chemistry , Antigens, Protozoan/immunology , Carrier Proteins/immunology , Cell Line , Drug Synergism , Epitopes/chemistry , Epitopes/immunology , Humans , Malaria Vaccines/chemistry , Malaria, Falciparum/prevention & control , Merozoites/immunology , Mice , Protein Binding , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/isolation & purification
8.
Microbiol Spectr ; 10(1): e0169521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35171046

ABSTRACT

Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel). Vaccination with Alhydroxiquim-II combined with a stabilized, trimeric form of the SARS-CoV-2 spike protein (termed CoVac-II) resulted in high-titer NAbs in mice, with no decay in responses over an 8-month period. NAbs from sera of CoVac-II-immunized mice, horses and rabbits were broadly neutralizing against SARS-CoV-2 variants. Boosting long-term CoVac-II-immunized mice with adjuvanted spike protein from the Beta variant markedly increased levels of NAb titers against multiple SARS-CoV-2 variants; notably, high titers against the Delta variant were observed. These data strongly support the clinical assessment of Alhydroxiquim-II-adjuvanted spike proteins to protect against SARS-CoV-2 variants of concern. IMPORTANCE There is an urgent need for next-generation COVID-19 vaccines that are safe, demonstrate high protective efficacy against SARS-CoV-2 variants and can be manufactured at scale. We describe a vaccine candidate (CoVac-II) that is based on stabilized, trimeric spike antigen produced in an optimized, scalable and chemically defined production process. CoVac-II demonstrates strong and persistent immunity after vaccination of mice, and is highly immunogenic in multiple animal models, including rabbits and horses. We further show that prior immunity can be boosted using a recombinant spike antigen from the Beta variant; importantly, plasma from boosted mice effectively neutralize multiple SARS-CoV-2 variants in vitro, including Delta. The strong humoral and Th1-biased immunogenicity of CoVac-II is driven by use of Alhydroxiquim-II (AHQ-II), the first adjuvant in an authorized vaccine that acts through the dual Toll-like receptor (TLR)7 and TLR8 pathways, as part of the Covaxin vaccine. Our data suggest AHQ-II/spike protein combinations could constitute safe, affordable, and mass-manufacturable COVID-19 vaccines for global distribution.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , Horses , Mice , Rabbits , T-Lymphocytes/immunology
9.
Oxid Med Cell Longev ; 2022: 5397733, 2022.
Article in English | MEDLINE | ID: mdl-35047106

ABSTRACT

The infection of coronavirus disease (COVID-19) seriously threatens human life. It is urgent to generate effective and safe specific antibodies (Abs) against the pathogenic elements of COVID-19. Mice were immunized with SARS-CoV-2 spike protein antigens: S ectodomain-1 (CoV, in short) mixed in Alum adjuvant for 2 times and boosted with CoV weekly for 6 times. A portion of mice were treated with Maotai liquor (MTL, in short) or/and heat stress (HS) together with CoV boosting. We observed that the anti-CoV Ab was successfully induced in mice that received the CoV/Alum immunization for 2 times. However, upon boosting with CoV, the CoV Ab production diminished progressively; spleen CoV Ab-producing plasma cell counts reduced, in which substantial CoV-specific Ab-producing plasma cells (sPC) were apoptotic. Apparent oxidative stress signs were observed in sPCs; the results were reproduced by exposing sPCs to CoV in the culture. The presence of MTL or/and HS prevented the CoV-induced oxidative stress in sPCs and promoted and stabilized the CoV Ab production in mice in re-exposure to CoV. In summary, CoV/Alum immunization can successfully induce CoV Ab production in mice that declines upon reexposure to CoV. Concurrent administration of MTL/HS stabilizes and promotes the CoV Ab production in mice.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Apoptosis , COVID-19/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Superoxide Dismutase-1/physiology , Adjuvants, Immunologic , Alcoholic Beverages , Alum Compounds , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/enzymology , COVID-19 Vaccines/immunology , Heat-Shock Response , Immunization, Secondary , Immunogenicity, Vaccine , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Plasma Cells/drug effects , Plasma Cells/pathology , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/physiology , Signal Transduction , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccination
10.
Cancer Cell ; 40(1): 103-108.e2, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34990570

ABSTRACT

Patients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type. Regardless of viral variant, mRNA1273 is the most immunogenic, followed by BNT162b2, and then Ad26.COV2.S. Neutralization of more variants (breadth) is associated with a greater magnitude of wildtype neutralization, and increases with time since vaccination; advancing age associates with a lower breadth. The concentrations of anti-spike protein antibody are a good surrogate for breadth (positive predictive value of =90% at >1,000 U/mL). Booster SARS-CoV-2 vaccines confer enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with the current vaccines increases the breadth of responses against variants.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Neoplasms/immunology , SARS-CoV-2/immunology , Aged , Aging/immunology , Antigens, Viral/immunology , Female , Humans , Immunization, Secondary , Immunocompromised Host , Immunogenicity, Vaccine , In Vitro Techniques , Male , Middle Aged , Neoplasms/therapy , Spike Glycoprotein, Coronavirus/immunology , Viral Load
11.
Sci Immunol ; 7(68): eabn8014, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35076258

ABSTRACT

Current coronavirus disease 2019 (COVID-19) vaccines effectively reduce overall morbidity and mortality and are vitally important to controlling the pandemic. Individuals who previously recovered from COVID-19 have enhanced immune responses after vaccination (hybrid immunity) compared with their naïve-vaccinated peers; however, the effects of post-vaccination breakthrough infections on humoral immune response remain to be determined. Here, we measure neutralizing antibody responses from 104 vaccinated individuals, including those with breakthrough infections, hybrid immunity, and no infection history. We find that human immune sera after breakthrough infection and vaccination after natural infection broadly neutralize SARS-CoV-2 (severe acute respiratory coronavirus 2) variants to a similar degree. Although age negatively correlates with antibody response after vaccination alone, no correlation with age was found in breakthrough or hybrid immune groups. Together, our data suggest that the additional antigen exposure from natural infection substantially boosts the quantity, quality, and breadth of humoral immune response regardless of whether it occurs before or after vaccination.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Immunogenicity, Vaccine , Middle Aged , Phagocytosis , SARS-CoV-2/growth & development , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Time Factors , Vero Cells , Viral Load
12.
Cancer Cell ; 40(2): 114-116, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34968417
15.
Br J Haematol ; 196(2): 356-359, 2022 01.
Article in English | MEDLINE | ID: mdl-34528249

ABSTRACT

Patients with multiple myeloma (MM) have a suboptimal antibody response following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lower seroconversion rates following coronavirus disease 2019 (COVID-19) compared with healthy individuals. In this context, we evaluated the development of neutralising antibodies (NAbs) against SARS-CoV-2 in non-vaccinated patients with MM and COVID-19 compared with patients after vaccination with two doses of the BNT162b2 vaccine. Serum was collected either four weeks post confirmed diagnosis or four weeks post a second dose of BNT162b2. NAbs were measured with a Food and Drug Administration-approved enzyme-linked immunosorbent assay methodology. Thirty-five patients with COVID-19 and MM along with 35 matched patients were included. The two groups did not differ in age, sex, body mass index, prior lines of therapy, disease status, lymphocyte count, immunoglobulin levels and comorbidities. Patients with MM and COVID-19 showed a superior humoral response compared with vaccinated patients with MM. The median (interquartile range) NAb titre was 87·6% (71·6-94%) and 58·7% (21·4-91·8%) for COVID-19-positive and vaccinated patients, respectively (P = 0·01).Importantly, there was no difference in NAb production between COVID-19-positive and vaccinated patients who did not receive any treatment (median NAb 85·1% vs 91·7%, P = 0·14). In conclusion, our data indicate that vaccinated patients with MM on treatment without prior COVID-19 should be considered for booster vaccine doses.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , BNT162 Vaccine/immunology , COVID-19/immunology , Multiple Myeloma/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/complications , COVID-19/prevention & control , COVID-19 Serological Testing , Epitopes/immunology , Female , Humans , Immunization, Secondary , Immunocompromised Host , Immunogenicity, Vaccine , Male , Middle Aged , Multiple Myeloma/complications , Prospective Studies , Vaccination
17.
Biochem Biophys Res Commun ; 586: 87-92, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34837837

ABSTRACT

There is an urgent need to understand the functional effects of mutations in emerging variants of SARS-CoV-2. Variants of concern (alpha, beta, gamma and delta) acquired four patterns of spike glycoprotein mutations that enhance transmissibility and immune evasion: 1) mutations in the N-terminal domain (NTD), 2) mutations in the Receptor Binding Domain (RBD), 3) mutations at interchain contacts of the spike trimer, and 4) furin cleavage site mutations. Most distinguishing mutations among variants of concern are exhibited in the NTD, localized to sites of high structural flexibility. Emerging variants of interest such as mu, lambda and C.1.2 exhibit the same patterns of mutations as variants of concern. There is a strong likelihood that SARS-CoV-2 variants will continue to emerge with mutations in these defined patterns, thus providing a basis for the development of next line antiviral drugs and vaccine candidates.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/transmission , Evolution, Molecular , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Models, Molecular , Pandemics , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
18.
Virology ; 566: 98-105, 2022 01.
Article in English | MEDLINE | ID: mdl-34896902

ABSTRACT

The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Herpesvirus 1, Bovine/immunology , Herpesvirus Vaccines/administration & dosage , Immunoglobulin G/biosynthesis , Infectious Bovine Rhinotracheitis/prevention & control , Toll-Like Receptor 8/immunology , Toll-Like Receptor 9/immunology , Adaptive Immunity/drug effects , Animals , Antibodies, Viral , Cattle , Cell Proliferation , Endosomes/immunology , Endosomes/metabolism , Gene Expression , Herpesvirus 1, Bovine/pathogenicity , Immunity, Innate/drug effects , Immunization, Secondary/methods , Infectious Bovine Rhinotracheitis/genetics , Infectious Bovine Rhinotracheitis/immunology , Infectious Bovine Rhinotracheitis/virology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Lymphocytes/immunology , Lymphocytes/virology , Male , Nasal Cavity/immunology , Nasal Cavity/virology , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccination/methods , Vaccines, Inactivated
19.
Sci Rep ; 11(1): 21856, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750487

ABSTRACT

Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.


Subject(s)
Apolipoproteins E/administration & dosage , Apolipoproteins E/immunology , Hepacivirus/immunology , Hepatitis B virus/immunology , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/immunology , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/blood , Antigen Presentation/immunology , Cell Line , Female , Hepatitis C/immunology , Hepatitis C/prevention & control , Hepatitis C Antibodies/biosynthesis , Hepatitis C Antibodies/blood , Humans , Immune Evasion , Rabbits , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/immunology
20.
J Hematol Oncol ; 14(1): 174, 2021 10 24.
Article in English | MEDLINE | ID: mdl-34689821

ABSTRACT

BACKGROUND: Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated. METHODS: Forty allo-HCT recipients were included in a study of immunization with BNT162b2 mRNA vaccine at days 0 and 21. Binding antibodies (Ab) to SARS-CoV-2 receptor binding domain (RBD) were assessed at days 0, 21, 28, and 49 while neutralizing Ab against SARS-CoV-2 wild type (NT50) were assessed at days 0 and 49. Results observed in allo-HCT patients were compared to those obtained in 40 healthy adults naive of SARS-CoV-2 infection. Flow cytometry analysis of peripheral blood cells was performed before vaccination to identify potential predictors of Ab responses. RESULTS: Three patients had detectable anti-RBD Ab before vaccination. Among the 37 SARS-CoV-2 naive patients, 20 (54%) and 32 (86%) patients had detectable anti-RBD Ab 21 days and 49 days postvaccination. Comparing anti-RBD Ab levels in allo-HCT recipients and healthy adults, we observed significantly lower anti-RBD Ab levels in allo-HCT recipients at days 21, 28 and 49. Further, 49% of allo-HCT patients versus 88% of healthy adults had detectable NT50 Ab at day 49 while allo-HCT recipients had significantly lower NT50 Ab titers than healthy adults (P = 0.0004). Ongoing moderate/severe chronic GVHD (P < 0.01) as well as rituximab administration in the year prior to vaccination (P < 0.05) correlated with low anti-RBD and NT50 Ab titers at 49 days after the first vaccination in multivariate analyses. Compared to healthy adults, allo-HCT patients without chronic GVHD or rituximab therapy had comparable anti-RBD Ab levels and NT50 Ab titers at day 49. Flow cytometry analyses before vaccination indicated that Ab responses in allo-HCT patients were strongly correlated with the number of memory B cells and of naive CD4+ T cells (r > 0.5, P < 0.01) and more weakly with the number of follicular helper T cells (r = 0.4, P = 0.01). CONCLUSIONS: Chronic GVHD and rituximab administration in allo-HCT recipients are associated with reduced Ab responses to BNT162b2 vaccination. Immunological markers could help identify allo-HCT patients at risk of poor Ab response to mRNA vaccination. TRIAL REGISTRATION: The study was registered at clinicaltrialsregister.eu on 11 March 2021 (EudractCT # 2021-000673-83).


Subject(s)
Antibodies, Neutralizing/biosynthesis , COVID-19 Vaccines/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Adult , Aged , Antibodies, Neutralizing/immunology , BNT162 Vaccine , COVID-19 Vaccines/immunology , Humans , Middle Aged , Transplantation Conditioning , Transplantation Immunology , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...