Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.474
Filter
1.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Article in English | MEDLINE | ID: mdl-38835260

ABSTRACT

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria , Membrane Proteins , Mice, Inbred BALB C , Plasmodium berghei , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Plasmodium berghei/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria/prevention & control , Malaria/immunology , Membrane Proteins/immunology , Mice , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Female , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Parasitemia/immunology , Parasitemia/prevention & control , CD4-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
2.
PLoS One ; 19(6): e0304268, 2024.
Article in English | MEDLINE | ID: mdl-38838004

ABSTRACT

American tegumentary leishmaniasis (ATL) diagnosis is an open question, and the search for a solution is urgent. The available tests that detect the etiological agent of the infection are specific for ATL diagnosis. However, they present disadvantages, such as low sensitivity and the need for invasive procedures to obtain the samples. Immunological methods (leishmanin skin test and search for anti-Leishmania antibodies) are good alternatives to the etiological diagnosis of ATL. Presently, we face problems with disease confirmation due to the discontinuity in the production of leishmanin skin test antigen, particularly in resource-poor settings. Aiming to diagnose ATL, we validated rLb6H-ELISA for IgG antibodies using 1,091 samples from leishmaniasis patients and healthy controls, divided into four panels, living in 19 Brazilian endemic and non-endemic states. The rLb6H-ELISA showed a sensitivity of 98.6% and a specificity of 100.0%, with the reference panel comprising 70 ATL patient samples and 70 healthy controls. The reproducibility evaluation showed a coefficient of variation of positive samples ≤ 8.20% for repeatability, ≤ 17,97% for reproducibility, and ≤ 8.12% for homogeneity. The plates sensitized with rLb6H were stable at 4°C and -20°C for 180 days and 37°C for seven days, indicating 12 months of validity. In samples of ATL patients from five research and healthcare centers in endemic and non-endemic areas, rLb6H-ELISA showed a sensitivity of 84.0%; no significant statistical difference was observed among the five centers (chi-square test, p = 0.13). In samples of healthy controls from four areas with different endemicity, a specificity of 92.4% was obtained; lower specificity was obtained in a visceral leishmaniasis high endemicity locality (chi-square test, p<0.001). Cross-reactivity was assessed in 166 other disease samples with a positivity of 13.9%. Based on the good diagnostic performance and the reproducibility and stability of the antigen, we suggest using ELISA-rLb6H to diagnose ATL.


Subject(s)
Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Leishmaniasis, Cutaneous , Humans , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Female , Male , Adult , Middle Aged , Sensitivity and Specificity , Adolescent , Reproducibility of Results , Recombinant Proteins/immunology , Young Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Aged , Child , Case-Control Studies , Brazil/epidemiology
3.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
4.
Parasite ; 31: 25, 2024.
Article in English | MEDLINE | ID: mdl-38759155

ABSTRACT

Toxoplasma gondii is a parasite responsible for toxoplasmosis, an emerging and often neglected zoonosis in South America, particularly Brazil. Felines, the only definitive hosts, excrete oocysts in their feces, potentially infecting all homeotherms. Domestic cats are primarily responsible for contaminating human environments with these oocysts. Monitoring their populations is therefore essential to ensure proper toxoplasmosis prophylaxis. The aim of this study was to estimate the prevalence of T. gondii and exposure factors in a population of owner cats in the city of João Pessoa, Paraíba, Brazil. A total of 267 blood samples were collected from domestic cats aged between 1 and 15 years and tested with an immunofluorescence antibody test. The seroprevalence of antibodies against T. gondii was only 17.22% (46/267 individuals). This result therefore suggests a low contribution of domestic cats to T. gondii contamination of the urban environment. The cats' age and living environment were identified as risk factors for cat exposure to T. gondii.


Title: Géoépidémiologie, séroprévalence et facteurs associés à l'infection à Toxoplasma gondii chez les chats domiciliés à Paraíba (Brésil). Abstract: Toxoplasma gondii est le parasite responsable de la toxoplasmose, une zoonose émergente et souvent négligée en Amérique du Sud, notamment au Brésil. Les félins, seuls hôtes définitifs, excrètent des oocystes dans leurs selles, infectant potentiellement tous les homéothermes. Les chats domestiques sont les premiers responsables de la contamination des environnements humains avec ces oocystes. La surveillance de leurs populations est donc essentielle pour garantir une prophylaxie adéquate contre la toxoplasmose. Le but de cette étude était d'estimer la prévalence de T. gondii et les facteurs d'exposition dans une population de chats domestiques de la ville de João Pessoa, Paraíba, Brésil. Au total, 267 échantillons de sang ont été prélevés sur des chats domestiques âgés de 1 à 15 ans et testés avec un test d'immunofluorescence des anticorps. La séroprévalence des anticorps contre T. gondii n'était que de 17,22 % (46/267 individus). Ce résultat suggère donc une faible contribution des chats domestiques à la contamination du milieu urbain par T. gondii. L'âge et le milieu de vie des chats ont été identifiés comme facteurs de risque d'exposition du chat à T. gondii.


Subject(s)
Antibodies, Protozoan , Cat Diseases , Toxoplasma , Toxoplasmosis, Animal , Cats , Animals , Toxoplasmosis, Animal/epidemiology , Brazil/epidemiology , Seroepidemiologic Studies , Cat Diseases/epidemiology , Cat Diseases/parasitology , Toxoplasma/immunology , Female , Antibodies, Protozoan/blood , Male , Risk Factors , Humans , Age Factors
5.
Malar J ; 23(1): 154, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764069

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria is a public health issue mostly seen in tropical countries. Until now, there is no effective malaria vaccine against antigens specific to the blood-stage of P. falciparum infection. Because the pathogenesis of malarial disease results from blood-stage infection, it is essential to identify the most promising blood-stage vaccine candidate antigens under natural exposure to malaria infection. METHODS: A cohort of 400 pregnant women and their infants was implemented in South Benin. An active and passive protocol of malaria surveillance was established during pregnancy and infancy to precisely ascertain malaria infections during the follow-up. Twenty-eight antibody (Ab) responses specific to seven malaria candidate vaccine antigens were repeatedly quantified during pregnancy (3 time points) and infancy (6 time points) in order to study the Ab kinetics and their protective role. Abs were quantified by ELISA and logistic, linear and cox-proportional hazard model were performed to analyse the associations between Ab responses and protection against malaria in mothers and infants, taking into account socio-economic factors and for infants an environmental risk of exposure. RESULTS: The levels of IgM against MSP1, MSP2 and MSP3 showed an early protective response against the onset of symptomatic malaria infections starting from the 18th month of life, whereas no association was found for IgG responses during infancy. In women, some IgG responses tend to be associated with a protection against malaria risk along pregnancy and at delivery, among them IgG3 against GLURP-R0 and IgG2 against MSP1. CONCLUSION: The main finding suggests that IgM should be considered in vaccine designs during infanthood. Investigation of the functional role played by IgM in malaria protection needs further attention.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Immunoglobulin M , Malaria, Falciparum , Plasmodium falciparum , Humans , Female , Plasmodium falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Pregnancy , Infant , Immunoglobulin M/blood , Immunoglobulin G/blood , Antibodies, Protozoan/blood , Benin , Antigens, Protozoan/immunology , Adult , Young Adult , Enzyme-Linked Immunosorbent Assay , Infant, Newborn , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/immunology , Cohort Studies
6.
Vet Parasitol Reg Stud Reports ; 51: 101032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772648

ABSTRACT

Toxoplasma gondii is described as a potential cause of abortion in goats and as a threat to public health. To estimate the prevalence of goats infected by T. gondii, in different cities in the Espírito Santo State, and to identify possible risk factors for infection a serological study was conducted. A total of 146 goat serum samples from the cities of Cariacica, Serra and Vila Velha were analyzed. The presence of IgG Class Immunoglobulins was serologically evaluated by Immunofluorescence antibody test (IFAT) and by Enzyme-linked Immunosorbent Assay (ELISA). The seroprevalence of anti-T. gondii was 46.6% (68/146) in both techniques and the same samples got the same results in both techniques. Among the analyzed sera, 70.6% (48/68) exhibited high-avidity IgG antibodies, and 29.4% (20/68) exhibited low-avidity IgG antibodies, suggesting that the infection was chronic in the infected animals. Female sex, age group over two years old, water from the public supply system, storage of food and supplies in an open and unprotected place, and the presence of a domestic cat on the property were identified as risk factors for T. gondii infection in goats. The state of Espirito Santo has a high frequency of infected goats, and this is the first research on caprine toxoplasmosis seroepidemiology in that region.


Subject(s)
Antibodies, Protozoan , Goat Diseases , Goats , Immunoglobulin G , Toxoplasma , Toxoplasmosis, Animal , Animals , Goats/parasitology , Seroepidemiologic Studies , Brazil/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Risk Factors , Toxoplasma/immunology , Female , Male , Antibodies, Protozoan/blood , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Prevalence
7.
Acta Trop ; 255: 107233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723738

ABSTRACT

Toxoplasma gondii is the causative agent of toxoplasmosis, a zoonotic disease of worldwide distribution. The aim of this study was to assess the seroprevalence of T. gondii in undergraduate students from Lima, Peru, and to identify the risk factors linked to the infection. For this, serum samples of 100 undergraduate students of the Faculty of Biological Sciences were tested for T. gondii antibodies with a commercially available ELISA. The seroprevalence of T. gondii in these subjects was 7 %. Only the age of students showed a statistical association with T. gondii seropositivity. The level of awareness regarding toxoplasmosis was also investigated. In the sample, 71 % of the students are aware of toxoplasmosis and 64 % that a parasite is the cause of the infection. Most know it is transmitted through undercooked meat (57 %), but are unaware of contaminated vegetables (40 %), organ transplants (17 %), blood transfusions (32 %), and soil contact (39 %). In the epidemiological context it will be valuable to verify toxoplasmosis awareness in other population groups and other regions in Peru.


Subject(s)
Antibodies, Protozoan , Health Knowledge, Attitudes, Practice , Students , Toxoplasma , Toxoplasmosis , Peru/epidemiology , Humans , Toxoplasmosis/epidemiology , Toxoplasma/immunology , Seroepidemiologic Studies , Students/statistics & numerical data , Female , Risk Factors , Male , Young Adult , Adult , Adolescent , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Animals
8.
Malar J ; 23(1): 163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783317

ABSTRACT

BACKGROUND: Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS: Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS: In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS: These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.


Subject(s)
Antigens, Protozoan , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Peru/epidemiology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Adult , Male , Young Adult , Adolescent , Female , Middle Aged , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Child , Aged , Enzyme-Linked Immunospot Assay
9.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
10.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
11.
Sci Rep ; 14(1): 10772, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730052

ABSTRACT

We aimed to determine SARS-CoV-2 antibody seropositivity among pregnant women and the transplacental transfer efficiency of SARS-CoV-2-specific antibodies relative to malaria antibodies among SARS-CoV-2 seropositive mother-cord pairs. This cross-sectional study was conducted in Accra, Ghana, from March to May 2022. Antigen- specific IgG antibodies against SARS-CoV-2 (nucleoprotein and spike-receptor binding domain) and malarial antigens (circumsporozoite protein and merozoite surface protein 3) in maternal and cord plasma were measured by ELISA. Plasma from both vaccinated and unvaccinated pregnant women were tested for neutralizing antibodies using commercial kit. Of the unvaccinated pregnant women tested, 58.12% at antenatal clinics and 55.56% at the delivery wards were seropositive for both SARS-CoV-2 nucleoprotein and RBD antibodies. Anti-SARS-CoV-2 antibodies in cord samples correlated with maternal antibody levels (N antigen rs = 0.7155, p < 0.001; RBD rs = 0.8693, p < 0.001). Transplacental transfer of SARS-CoV-2 nucleoprotein antibodies was comparable to circumsporozoite protein antibodies (p = 0.9999) but both were higher than transfer rates of merozoite surface protein 3 antibodies (p < 0.001). SARS-CoV-2 IgG seropositivity among pregnant women in Accra is high with a boost of SARS-CoV-2 RBD-specific IgG in vaccinated women. Transplacental transfer of anti-SARS-CoV-2 and malarial antibodies was efficient, supporting vaccination of mothers as a strategy to protect infants against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , Female , Pregnancy , Ghana , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Cross-Sectional Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Infant , Infant, Newborn , Spike Glycoprotein, Coronavirus/immunology , Immunity, Maternally-Acquired , Young Adult , Fetal Blood/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood
12.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692205

ABSTRACT

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Polyethylene Glycols , Sensitivity and Specificity , Humans , Enzyme-Linked Immunosorbent Assay/methods , Polyethylene Glycols/chemistry , Antigens, Protozoan/immunology , Leishmaniasis/diagnosis , Magnetic Iron Oxide Nanoparticles/chemistry , Antibodies, Protozoan/blood
13.
Acta Trop ; 255: 107241, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710263

ABSTRACT

Toxoplasma gondii is a neurotropic protozoan parasite that affects neuronal processing in the brain. This study aimed to investigate the prevalence of T. gondii infection in psychiatric disorder patients. We also investigated the potential association between sociodemographic, clinical manifestation, and behavior of Toxoplasma-seropositive patients with psychiatric disorders. Commercial ELISAs (IgG, IgM, and IgG avidity) using serum and PCR using buffy coat were performed on samples from 54 individuals in each of the following groups: patients diagnosed with depressive disorder, bipolar disorder, and schizophrenia, as well as psychiatrically healthy subjects (control group). They were recruited from the Hospital Universiti Sains Malaysia in Kelantan, Malaysia. Of 54 patients with depressive disorder, 24/54 (44.4 %) were seropositive for IgG, and four (16.7 %) were IgG+/IgM+. Among the latter, a high avidity index indicating a past infection was observed in half of the samples (50.0 %), and the other half (50.0 %) showed a low avidity index, indicating a possible recent infection. Meanwhile, 30/54 (55.6 %) patients with bipolar disorder were seropositive for IgG+, five (16.7 %) were IgG+/IgM+, and four of them had a high avidity index, and one had a low avidity index. Patients with schizophrenia showed 29/54 (53.7 %) seropositive for IgG, two of them (6.9 %) were IgG+/IgM+; one of latter had a high avidity index, and one had a low avidity index. Of 54 people in the control group, 37.0 % (20/54) were seropositive for T. gondii IgG antibodies. However, no significant difference was observed in seroprevalence between the control group and each patient group. No PCR-positive results were documented. A Chi-Square and multiple logistic regression showed that age (p = 0.031), close contact with cats/pets (p = 0.033) and contact with soil (p = 0.012) were significantly associated with Toxoplasma seropositivity in patients with psychiatric disorders. Additional research is needed to elucidate the causal relationships and underlying mechanisms.


Subject(s)
Antibodies, Protozoan , Immunoglobulin G , Immunoglobulin M , Toxoplasma , Toxoplasmosis , Humans , Toxoplasmosis/epidemiology , Toxoplasmosis/complications , Toxoplasmosis/blood , Malaysia/epidemiology , Seroepidemiologic Studies , Male , Female , Adult , Antibodies, Protozoan/blood , Toxoplasma/immunology , Middle Aged , Immunoglobulin G/blood , Immunoglobulin M/blood , Young Adult , Mental Disorders/epidemiology , Schizophrenia/epidemiology , Schizophrenia/complications , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Socioeconomic Factors , Aged , Adolescent , Bipolar Disorder/epidemiology , Bipolar Disorder/complications , Bipolar Disorder/blood , Polymerase Chain Reaction
14.
J Parasitol ; 110(3): 206-209, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802105

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that infects most warm-blooded animals, including birds. Scavenging birds are epidemiologically important hosts because they can serve as indicators of environmental T. gondii levels. A rapid point-of-care (POC) test that detects antibodies to T. gondii in humans is commercially available. In this research, we assessed the ability of the human POC test to detect anti-T. gondii antibodies in 106 black vultures (Coragyps atratus) and 23 ring-billed gulls (Larus delawarensis) from Pennsylvania, USA. Serum samples were tested with the POC test and compared to the modified agglutination test (MAT) in a blinded study. Overall, anti-T. gondii antibodies were detected in 2.8% (3/106) of black vultures and 60.9% (14/23) of ring-billed gulls by the POC test. One false-positive POC test occurred in a black vulture that was negative by MAT. False-negative results were obtained in 2 black vultures and 4 ring-billed gulls that had MAT titers of 1:25 or 1:50. The sensitivity and specificity of the POC for both black vultures and ring-billed gulls combined were 95.7% and 95.5%, respectively. This is the first study using human POC tests to detect antibodies to T. gondii in birds. Further study of the rapid test as a screening tool for serological surveillance of T. gondii in birds is warranted.


Subject(s)
Agglutination Tests , Antibodies, Protozoan , Bird Diseases , Charadriiformes , Falconiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Toxoplasma/immunology , Charadriiformes/parasitology , Pennsylvania/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/immunology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Bird Diseases/immunology , Falconiformes/parasitology , Agglutination Tests/veterinary , Sensitivity and Specificity , Point-of-Care Testing
15.
PLoS Negl Trop Dis ; 18(5): e0012198, 2024 May.
Article in English | MEDLINE | ID: mdl-38781272

ABSTRACT

BACKGROUND: Toxoplasmosis is a serious endemic zoonotic disease caused by the protozoan parasite Toxoplasma gondii. Toxoplasma infection during pregnancy can result in congenital transmission and serious fetal and neonatal complications. This systematic review and meta-analysis aimed to assess the pooled seroprevalence of T. gondii infection and its determinants among pregnant women in African countries. METHODS: All articles reporting the seroprevalence of toxoplasmosis among pregnant women in African countries and published from 2010 to 2023 were searched using various databases. The pooled prevalence of toxoplasmosis was calculated using a random-effect model. The variation between the included studies was assessed using a funnel plot and I2 heterogeneity statistics. To identify the sources of heterogeneity, sub-group analysis was further conducted by country, diagnostic method, and sub-African region. The association of prevalence rates with the socio-economic level and geoclimatic parameters was also explored. RESULTS: In total, 29,383 pregnant women from 60 articles were included for analysis. The pooled T. gondii seroprevalence was 42.89% with high heterogeneity (I2 = 99.4%, P < 0.001). Sub-group analysis revealed variation by country (ranging from 2.62% in Namibia to 80.28% in Congo), diagnostic method used (from 8.66% in studies using a rapid diagnostic test to 55.69% in those using an agglutination test), and sub-African region (from 4.14% in regions of Southern Africa to 53.96 in Central Africa). Cat ownership (OR = 1.58) and the consumption of raw meat (OR = 1.50) and raw vegetables (OR = 1.48) had a statistically significant combined effect on T. gondii seroprevalence. No association was found between T. gondii prevalence and the level of income of the country or geoclimatic parameters. CONCLUSION: The prevalence of toxoplasmosis infection among pregnant women in Africa is high, particularly in Central and Eastern Africa. The determinants of prevalence are multifactorial. Therefore, efforts should be made to increase the awareness of women concerning the risk factors for toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Female , Seroepidemiologic Studies , Pregnancy , Toxoplasmosis/epidemiology , Toxoplasma/immunology , Africa/epidemiology , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/parasitology , Antibodies, Protozoan/blood , Animals , Prevalence , Pregnant Women
16.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704253

ABSTRACT

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Plasmodium knowlesi , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Antibodies, Monoclonal/immunology , Vaccine Development/methods , Animals
17.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Serotyping , Sheep Diseases , Swine Diseases , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Genotype , Peptides/immunology , Serotyping/methods , Sheep , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Swine , Swine Diseases/parasitology , Swine Diseases/diagnosis , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology
18.
PLoS Negl Trop Dis ; 18(5): e0011335, 2024 May.
Article in English | MEDLINE | ID: mdl-38805559

ABSTRACT

BACKGROUND: Congenital toxoplasmosis is a treatable, preventable disease, but untreated causes death, prematurity, loss of sight, cognition and motor function, and substantial costs worldwide. OBJECTIVES: We asked whether high performance of an Immunochromatographic-test (ICT) could enable accurate, rapid diagnosis/treatment, establishing new, improved care-paradigms at point-of-care and clinical laboratory. METHODS: Data were obtained in 12 studies/analyses addressing: 1-feasibility/efficacy; 2-false-positives; 3-acceptability; 4-pink/black-line/all studies; 5-time/cost; 6-Quick-Information/Limit-of-detection; 7, 8-acute;-chronic; 9-epidemiology; 10-ADBio; 11,12-Commentary/Cases/Chronology. FINDINGS: ICT was compared with gold-standard or predicate-tests. Overall, ICT performance for 1093 blood/4967 sera was 99.2%/97.5% sensitive and 99.0%/99.7% specific. However, in clinical trial, FDA-cleared-predicate tests initially caused practical, costly problems due to false-positive-IgM results. For 58 persons, 3/43 seronegative and 2/15 chronically infected persons had false positive IgM predicate tests. This caused substantial anxiety, concerns, and required costly, delayed confirmation in reference centers. Absence of false positive ICT results contributes to solutions: Lyon and Paris France and USA Reference laboratories frequently receive sera with erroneously positive local laboratory IgM results impeding patient care. Therefore, thirty-two such sera referred to Lyon's Reference laboratory were ICT-tested. We collated these with other earlier/ongoing results: 132 of 137 USA or French persons had false-positive local laboratory IgM results identified correctly as negative by ICT. Five false positive ICT results in Tunisia and Marseille, France, emphasize need to confirm positive ICT results with Sabin-Feldman-Dye-test or western blot. Separate studies demonstrated high performance in detecting acute infections, meeting FDA, CLIA, WHO REASSURED, CEMark criteria and patient and physician satisfaction with monthly-gestational-ICT-screening. CONCLUSIONS/SIGNIFICANCE: This novel paradigm using ICT identifies likely false positives or raises suspicion that a result is truly positive, rapidly needing prompt follow up and treatment. Thus, ICT enables well-accepted gestational screening programs that facilitate rapid treatment saving lives, sight, cognition and motor function. This reduces anxiety, delays, work, and cost at point-of-care and clinical laboratories. TRIAL REGISTRATION: NCT04474132, https://clinicaltrials.gov/study/NCT04474132 ClinicalTrials.gov.


Subject(s)
Toxoplasmosis, Congenital , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Protozoan/blood , False Positive Reactions , Immunoglobulin M/blood , Prenatal Diagnosis/methods , Sensitivity and Specificity , Toxoplasma/immunology , Toxoplasmosis, Congenital/diagnosis , Toxoplasmosis, Congenital/prevention & control
19.
Onderstepoort J Vet Res ; 91(1): e1-e8, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38708768

ABSTRACT

Interface areas shared by humans, domestic and wild animals may serve as high transmission contexts for Toxoplasma gondii. However, knowledge about the epidemiology of T. gondii in such areas is currently limited. The present study assessed the seroprevalence of T. gondii in different hosts from Mpumalanga, South Africa. Furthermore, we investigated the local knowledge and related practices about T. gondii by conducting a questionnaire study in the community. Blood samples were obtained and analysed for T. gondii antibodies using a commercial multispecies latex agglutination kit. The seroprevalence detected in humans (n = 160; patients showing signs of acute febrile illness), cats (n = 9), chickens (n = 336) and goats (n = 358) was 8.8%, 0.0%, 4.2% and 11.2%, respectively. Seroprevalence in impalas (n = 97), kudus (n = 55), wild dogs (n = 54), wildebeests (n = 43), warthogs (n = 97) and zebras (n = 68) was calculated at 5.2%, 7.3%, 100.0%, 20.9%, 13.4% and 9.1%, respectively. The questionnaire revealed that 63.0% of household owners were subsistence farmers, and 35.9% were pet owners. A high level of female participation was found (75.3%) when compared to male participation (24.7%). The results show a low circulation of T. gondii in the domestic cycle and suggest the presence of possible bridges between the wildlife cycle and the surrounding domestic cycle.Contribution: The study contributes to identifying transmission patterns and risk factors of T. gondii within human and animal populations. This topic fits within the scope of the journal presenting original research in veterinary science, with the focus on wild and domestic populations on the African continent on a topic of universal importance.


Subject(s)
Animals, Wild , Toxoplasma , Toxoplasmosis, Animal , Animals , South Africa/epidemiology , Humans , Seroepidemiologic Studies , Toxoplasmosis, Animal/epidemiology , Female , Male , Toxoplasmosis/epidemiology , Cats , Livestock/parasitology , Antibodies, Protozoan/blood , Zoonoses , Goats , Surveys and Questionnaires
20.
Sci Rep ; 14(1): 9595, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671033

ABSTRACT

Merozoite surface protein 3 of Plasmodium vivax (PvMSP3) contains a repertoire of protein members with unique sequence organization. While the biological functions of these proteins await elucidation, PvMSP3 has been suggested to be potential vaccine targets. To date, studies on natural immune responses to this protein family have been confined to two members, PvMSP3α and PvMSP3ß. This study analyzed natural IgG antibody responses to PvMSP3γ recombinant proteins derived from two variants: one containing insert blocks (CT1230nF) and the other without insert domain (NR25nF). The former variant was also expressed as two subfragment proteins: one encompassing variable domain I and insert block A (CT1230N) and the other spanning from insert block B to conserved block III (CT1230C). Serum samples were obtained from 246 symptomatic vivax malaria patients in Tak (n = 50) and Ubon Ratchathani (n = 196) Provinces. In total, 176 (71.5%) patients could mount antibodies to at least one recombinant PvMSP3γ antigen. IgG antibodies directed against antigens CT1230nF, CT1230N, CT1230C and NR25nF occurred in 96.6%, 61.4%, 71.6% and 68.2% of samples, respectively, suggesting the widespread occurrence of B-cell epitopes across PvMSP3γ. The rates of seropositivity seemed to correlate with the number of previous malaria episodes. Isotype analysis of anti-PvMSP3γ antibodies has shown predominant cytophilic subclass responses, accounting for 75.4-81.7% for IgG1 and 63.6-77.5% for IgG3. Comparing with previous studies in the same cohort, the numbers of serum samples reactive to antigens derived from P. vivax merozoite surface protein 9 (PvMSP9) and thrombospondin-related anonymous protein (PvTRAP) were higher than those to PvMSP3γ, being 92.7% and 87.0% versus 71.5%, respectively. Three (1.22%) serum samples were nonresponsive to all these malarial proteins. Nevertheless, the relevance of naturally acquired antibodies to PvMSP3γ in host protection requires further studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Adult , Female , Middle Aged , Adolescent , Young Adult , Recombinant Proteins/immunology , Child
SELECTION OF CITATIONS
SEARCH DETAIL
...