Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.725
Filter
1.
Front Immunol ; 15: 1370255, 2024.
Article in English | MEDLINE | ID: mdl-38803499

ABSTRACT

Theileria equi (T. equi) is an apicomplexan parasite that causes severe hemolytic anemia in equids. Presently, there is inadequate knowledge of the immune responses induced by T. equi in equid hosts impeding understanding of the host parasite relationship and development of potent vaccines for control of T. equi infections. The objective of this study was to evaluate the host-parasite dynamics between T. equi merozoites and infected horses by assessing cytokine expression during primary and secondary parasite exposure, and to determine whether the pattern of expression correlated with clinical indicators of disease. Our findings showed that the expression of pro-inflammatory cytokines was very low and inconsistent during both primary and secondary infection. There was also no correlation between the symptoms observed during primary infection and expression of the cytokines. This suggests that the symptoms might have occurred primarily due to hemolysis and likely not the undesirable effects of pro-inflammatory responses. However, IL-10 and TGF-ß1 were highly expressed in both phases of infection, and their expression was linked to antibody production but not moderation of pro-inflammatory cytokine responses.


Subject(s)
Horse Diseases , Interleukin-10 , Theileria , Theileriasis , Transforming Growth Factor beta1 , Animals , Horses , Theileriasis/immunology , Theileriasis/parasitology , Interleukin-10/metabolism , Interleukin-10/immunology , Theileria/immunology , Transforming Growth Factor beta1/metabolism , Horse Diseases/immunology , Horse Diseases/parasitology , Merozoites/immunology , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Cytokines/metabolism , Host-Parasite Interactions/immunology
2.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
3.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
4.
Sci Rep ; 14(1): 10772, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730052

ABSTRACT

We aimed to determine SARS-CoV-2 antibody seropositivity among pregnant women and the transplacental transfer efficiency of SARS-CoV-2-specific antibodies relative to malaria antibodies among SARS-CoV-2 seropositive mother-cord pairs. This cross-sectional study was conducted in Accra, Ghana, from March to May 2022. Antigen- specific IgG antibodies against SARS-CoV-2 (nucleoprotein and spike-receptor binding domain) and malarial antigens (circumsporozoite protein and merozoite surface protein 3) in maternal and cord plasma were measured by ELISA. Plasma from both vaccinated and unvaccinated pregnant women were tested for neutralizing antibodies using commercial kit. Of the unvaccinated pregnant women tested, 58.12% at antenatal clinics and 55.56% at the delivery wards were seropositive for both SARS-CoV-2 nucleoprotein and RBD antibodies. Anti-SARS-CoV-2 antibodies in cord samples correlated with maternal antibody levels (N antigen rs = 0.7155, p < 0.001; RBD rs = 0.8693, p < 0.001). Transplacental transfer of SARS-CoV-2 nucleoprotein antibodies was comparable to circumsporozoite protein antibodies (p = 0.9999) but both were higher than transfer rates of merozoite surface protein 3 antibodies (p < 0.001). SARS-CoV-2 IgG seropositivity among pregnant women in Accra is high with a boost of SARS-CoV-2 RBD-specific IgG in vaccinated women. Transplacental transfer of anti-SARS-CoV-2 and malarial antibodies was efficient, supporting vaccination of mothers as a strategy to protect infants against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , Female , Pregnancy , Ghana , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Cross-Sectional Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Infant , Infant, Newborn , Spike Glycoprotein, Coronavirus/immunology , Immunity, Maternally-Acquired , Young Adult , Fetal Blood/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood
5.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38803222

ABSTRACT

The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.


Subject(s)
Antibodies, Protozoan , Malaria, Falciparum , Merozoite Surface Protein 1 , Phagocytosis , Plasmodium falciparum , Humans , Merozoite Surface Protein 1/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Phagocytosis/immunology , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Female , Merozoites/immunology , Neutrophils/immunology , Neutrophils/metabolism
6.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704253

ABSTRACT

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Plasmodium knowlesi , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Antibodies, Monoclonal/immunology , Vaccine Development/methods , Animals
7.
Front Immunol ; 15: 1380660, 2024.
Article in English | MEDLINE | ID: mdl-38720894

ABSTRACT

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Babesia bovis , Babesiosis , Epitopes, B-Lymphocyte , Protozoan Proteins , Animals , Cattle , Babesia bovis/immunology , Epitopes, B-Lymphocyte/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Amino Acid Motifs , Conserved Sequence , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Amino Acid Sequence , Protozoan Vaccines/immunology
8.
Front Immunol ; 15: 1360220, 2024.
Article in English | MEDLINE | ID: mdl-38650925

ABSTRACT

Background: Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods: We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG-IgA Fc region chimera would enhance the level of ADRB activity. Results: We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG-IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions: We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.


Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum , Merozoites , Neutrophils , Plasmodium falciparum , Plasmodium falciparum/immunology , Humans , Antibodies, Protozoan/immunology , Neutrophils/immunology , Neutrophils/metabolism , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antibodies, Monoclonal/immunology , Merozoites/immunology , Respiratory Burst/immunology , Immunoglobulin G/immunology , Adult , Reactive Oxygen Species/metabolism , Kenya , Immunoglobulin Isotypes/immunology , Neutrophil Activation/immunology , Female , Antigens, Protozoan/immunology
9.
Front Immunol ; 15: 1331474, 2024.
Article in English | MEDLINE | ID: mdl-38650939

ABSTRACT

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Subject(s)
Aluminum Hydroxide , Antibodies, Protozoan , Immunoglobulin G , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Poly I-C , Protozoan Proteins , Animals , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Plasmodium vivax/immunology , Antibodies, Protozoan/immunology , Poly I-C/immunology , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Aluminum Hydroxide/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Female , Adjuvants, Immunologic , Immunity, Humoral , Immunity, Cellular , Mice, Inbred BALB C
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673969

ABSTRACT

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Goats , Immunoglobulin G , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Sheep , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Sheep Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Goat Diseases/parasitology , Goat Diseases/diagnosis , Goat Diseases/immunology
11.
mBio ; 15(5): e0085924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639536

ABSTRACT

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Leishmania donovani , Leishmaniasis, Visceral , Protozoan Proteins , Serologic Tests , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Animals , Humans , Mice , Dogs , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Serologic Tests/methods , Biomarkers/blood , Female , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Mice, Inbred BALB C , Membrane Proteins/genetics , Membrane Proteins/immunology , Sensitivity and Specificity , Dog Diseases/diagnosis , Dog Diseases/parasitology
12.
Int Immunopharmacol ; 132: 111982, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569430

ABSTRACT

RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.


Subject(s)
Blood-Brain Barrier , Erythrocytes , Extracellular Vesicles , Malaria, Cerebral , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligodeoxyribonucleotides , Plasmodium berghei , Animals , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Malaria, Cerebral/prevention & control , Plasmodium berghei/immunology , Extracellular Vesicles/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Blood-Brain Barrier/immunology , Mice , Oligodeoxyribonucleotides/administration & dosage , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Female , Brain/parasitology , Brain/immunology , Brain/pathology , Cytokines/metabolism , Cytokines/blood , Plasmodium yoelii/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Parasitemia/immunology , Disease Models, Animal , Immunoglobulin G/blood , Immunoglobulin G/immunology
13.
Sci Rep ; 14(1): 9595, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671033

ABSTRACT

Merozoite surface protein 3 of Plasmodium vivax (PvMSP3) contains a repertoire of protein members with unique sequence organization. While the biological functions of these proteins await elucidation, PvMSP3 has been suggested to be potential vaccine targets. To date, studies on natural immune responses to this protein family have been confined to two members, PvMSP3α and PvMSP3ß. This study analyzed natural IgG antibody responses to PvMSP3γ recombinant proteins derived from two variants: one containing insert blocks (CT1230nF) and the other without insert domain (NR25nF). The former variant was also expressed as two subfragment proteins: one encompassing variable domain I and insert block A (CT1230N) and the other spanning from insert block B to conserved block III (CT1230C). Serum samples were obtained from 246 symptomatic vivax malaria patients in Tak (n = 50) and Ubon Ratchathani (n = 196) Provinces. In total, 176 (71.5%) patients could mount antibodies to at least one recombinant PvMSP3γ antigen. IgG antibodies directed against antigens CT1230nF, CT1230N, CT1230C and NR25nF occurred in 96.6%, 61.4%, 71.6% and 68.2% of samples, respectively, suggesting the widespread occurrence of B-cell epitopes across PvMSP3γ. The rates of seropositivity seemed to correlate with the number of previous malaria episodes. Isotype analysis of anti-PvMSP3γ antibodies has shown predominant cytophilic subclass responses, accounting for 75.4-81.7% for IgG1 and 63.6-77.5% for IgG3. Comparing with previous studies in the same cohort, the numbers of serum samples reactive to antigens derived from P. vivax merozoite surface protein 9 (PvMSP9) and thrombospondin-related anonymous protein (PvTRAP) were higher than those to PvMSP3γ, being 92.7% and 87.0% versus 71.5%, respectively. Three (1.22%) serum samples were nonresponsive to all these malarial proteins. Nevertheless, the relevance of naturally acquired antibodies to PvMSP3γ in host protection requires further studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Adult , Female , Middle Aged , Adolescent , Young Adult , Recombinant Proteins/immunology , Child
14.
J Infect Dis ; 229(5): 1565-1573, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38298126

ABSTRACT

Plasmodium falciparum glutamic acid-rich protein (PfGARP) is a recently characterized cell surface antigen encoded by Plasmodium falciparum, the causative agent of severe human malaria pathophysiology. Previously, we reported that the human erythrocyte band 3 (SLC4A1) serves as a host receptor for PfGARP. Antibodies against PfGARP did not affect parasite invasion and growth. We surmised that PfGARP may play a role in the rosetting and adhesion of malaria. Another study reported that antibodies targeting PfGARP exhibit potent inhibition of parasite growth. This inhibition occurred without the presence of any immune or complement components, suggesting the activation of an inherent density-dependent regulatory system. Here, we used polyclonal antibodies against PfGARP and a monoclonal antibody mAb7899 to demonstrate that anti-PfGARP polyclonal antibodies, but not mAb7899, exerted potent inhibition of parasite growth in infected erythrocytes independent of PfGARP. These findings suggest that an unknown malaria protein(s) is the target of growth arrest by polyclonal antibodies raised against PfGARP.


Subject(s)
Antibodies, Protozoan , Erythrocytes , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/immunology , Plasmodium falciparum/growth & development , Humans , Erythrocytes/parasitology , Erythrocytes/immunology , Protozoan Proteins/immunology , Antibodies, Protozoan/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Animals , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
15.
Sci Rep ; 12(1): 3040, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197516

ABSTRACT

The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Antibodies, Protozoan/chemistry , Antigens, Protozoan/immunology , Carrier Proteins/immunology , Cell Line , Drug Synergism , Epitopes/chemistry , Epitopes/immunology , Humans , Malaria Vaccines/chemistry , Malaria, Falciparum/prevention & control , Merozoites/immunology , Mice , Protein Binding , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/isolation & purification
16.
Nat Commun ; 13(1): 933, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177602

ABSTRACT

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan/isolation & purification , Antibodies, Protozoan/metabolism , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , Antigens, Protozoan/metabolism , Cell Line , Drosophila melanogaster , Epitopes/immunology , Humans , Immunogenicity, Vaccine , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Vaccine Development
17.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: mdl-35060479

ABSTRACT

Background: In a phase 3 trial in African infants and children, the RTS,S/AS01 vaccine (GSK) showed moderate efficacy against clinical malaria. We sought to further understand RTS,S/AS01-induced immune responses associated with vaccine protection. Methods: Applying the blood transcriptional module (BTM) framework, we characterized the transcriptomic response to RTS,S/AS01 vaccination in antigen-stimulated (and vehicle control) peripheral blood mononuclear cells sampled from a subset of trial participants at baseline and month 3 (1-month post-third dose). Using a matched case-control study design, we evaluated which of these 'RTS,S/AS01 signature BTMs' associated with malaria case status in RTS,S/AS01 vaccinees. Antigen-specific T-cell responses were analyzed by flow cytometry. We also performed a cross-study correlates analysis where we assessed the generalizability of our findings across three controlled human malaria infection studies of healthy, malaria-naive adult RTS,S/AS01 recipients. Results: RTS,S/AS01 vaccination was associated with downregulation of B-cell and monocyte-related BTMs and upregulation of T-cell-related BTMs, as well as higher month 3 (vs. baseline) circumsporozoite protein-specific CD4+ T-cell responses. There were few RTS,S/AS01-associated BTMs whose month 3 levels correlated with malaria risk. In contrast, baseline levels of BTMs associated with dendritic cells and with monocytes (among others) correlated with malaria risk. The baseline dendritic cell- and monocyte-related BTM correlations with malaria risk appeared to generalize to healthy, malaria-naive adults. Conclusions: A prevaccination transcriptomic signature associates with malaria in RTS,S/AS01-vaccinated African children, and elements of this signature may be broadly generalizable. The consistent presence of monocyte-related modules suggests that certain monocyte subsets may inhibit protective RTS,S/AS01-induced responses. Funding: Funding was obtained from the NIH-NIAID (R01AI095789), NIH-NIAID (U19AI128914), PATH Malaria Vaccine Initiative (MVI), and Ministerio de Economía y Competitividad (Instituto de Salud Carlos III, PI11/00423 and PI14/01422). The RNA-seq project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under grant number U19AI110818 to the Broad Institute. This study was also supported by the Vaccine Statistical Support (Bill and Melinda Gates Foundation award INV-008576/OPP1154739 to R.G.). C.D. was the recipient of a Ramon y Cajal Contract from the Ministerio de Economía y Competitividad (RYC-2008-02631). G.M. was the recipient of a Sara Borrell-ISCIII fellowship (CD010/00156) and work was performed with the support of Department of Health, Catalan Government grant (SLT006/17/00109). This research is part of the ISGlobal's Program on the Molecular Mechanisms of Malaria which is partially supported by the Fundación Ramón Areces and we acknowledge support from the Spanish Ministry of Science and Innovation through the 'Centro de Excelencia Severo Ochoa 2019-2023' Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.


Subject(s)
Leukocytes, Mononuclear , Malaria Vaccines/immunology , Malaria, Falciparum , Transcriptome , Vaccines, Synthetic/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Case-Control Studies , Child, Preschool , Clinical Trials, Phase III as Topic , Humans , Infant , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Mozambique , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tanzania , Transcriptome/genetics , Transcriptome/immunology
18.
Nat Commun ; 13(1): 331, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039519

ABSTRACT

Strengthening malaria surveillance is a key intervention needed to reduce the global disease burden. Reliable serological markers of recent malaria exposure could improve current surveillance methods by allowing for accurate estimates of infection incidence from limited data. We studied the IgG antibody response to 111 Plasmodium falciparum proteins in 65 adult travellers followed longitudinally after a natural malaria infection in complete absence of re-exposure. We identified a combination of five serological markers that detect exposure within the previous three months with >80% sensitivity and specificity. Using mathematical modelling, we examined the antibody kinetics and determined that responses informative of recent exposure display several distinct characteristics: rapid initial boosting and decay, less inter-individual variation in response kinetics, and minimal persistence over time. Such serological exposure markers could be incorporated into routine malaria surveillance to guide efforts for malaria control and elimination.


Subject(s)
Antibodies, Protozoan/immunology , Biomarkers/metabolism , Malaria/epidemiology , Malaria/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adult , Antibody Formation/immunology , Child , Child, Preschool , Cohort Studies , Epitopes/immunology , Female , Fluorescence , Humans , Infant , Kenya/epidemiology , Kinetics , Male , Middle Aged , Models, Biological , ROC Curve , Young Adult
19.
Sci Rep ; 12(1): 1308, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079068

ABSTRACT

Trypanozoon infections in equids are caused by three parasite species in the Trypanozoon subgenus: Trypanosoma equiperdum, T. brucei and T. evansi. They are respectively responsible for infectious diseases dourine, nagana and surra. Due to the threat that Trypanozoon infection represents for international horse trading, accurate diagnostic tests are crucial. Current tests suffer from poor sensitivity and specificity, due in the first case to the transient presence of parasites in the blood and in the second, to antigenic cross-reactivity among Trypanozoon subspecies. This study was designed to develop a microsphere-based immunoassay for diagnosing equine trypanosomosis. We tested beads coated with eight Trypanosoma spp. recombinant antigens: enolase, GM6, PFR1, PFR2, ISG65, VSGat, RoTat1.2 and JN2118HU. Of these, GM6 was identified as the best candidate for the serological diagnosis of Trypanozoon infections in equids. Using a receiver operating characteristic (ROC) analysis on 349 equine sera, anti-GM6 antibodies were detected with an AUC value of 0.994 offering a sensitivity of 97.9% and a specificity of 96.0%. Our findings show that the GM6 antigen is a good target for diagnosing equine trypanosomosis using a microsphere-based immunoassay. This promising assay could be a useful alternative to the official diagnostic tool for equine trypanosomosis.


Subject(s)
Horse Diseases/diagnosis , Horses/parasitology , Microspheres , Serologic Tests/methods , Trypanosoma/immunology , Trypanosomiasis/diagnosis , Trypanosomiasis/veterinary , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Area Under Curve , Enzyme-Linked Immunosorbent Assay/methods , Horse Diseases/parasitology , Horses/blood , ROC Curve , Recombinant Proteins/immunology , Trypanosomiasis/blood , Trypanosomiasis/parasitology , Variant Surface Glycoproteins, Trypanosoma/immunology
20.
PLoS One ; 17(1): e0262018, 2022.
Article in English | MEDLINE | ID: mdl-34995295

ABSTRACT

BACKGROUND: Globally distributed with variable prevalence depending on geography, toxoplasmosis is a zoonosis caused by an obligate intracellular protozoan parasite, Toxoplasma gondii. This disease is usually benign but poses a risk for immunocompromised people and for newborns of mothers with a primary infection during pregnancy because of the risk of congenital toxoplasmosis (CT). CT can cause severe damage to fetuses-newborns. To our knowledge, no study has been conducted in sub-Saharan Africa on toxoplasmosis seroprevalence, seroconversion and CT in a large longitudinal cohort and furthermore, no observation has been made of potential relationships with malaria. METHODS: We performed a retrospective toxoplasmosis serological study using available samples from a large cohort of 1,037 pregnant women who were enrolled in a malaria follow-up during the 2008-2010 period in a rural area in Benin. We also used some existing data to investigate potential relationships between the maternal toxoplasmosis serological status and recorded malaria infections. RESULTS: Toxoplasmosis seroprevalence, seroconversion and CT rates were 52.6%, 3.4% and 0.2%, respectively, reflecting the population situation of toxoplasmosis, without targeted medical intervention. The education level influences the toxoplasmosis serological status of women, with women with little or no formal education have greater immunity than others. Surprisingly, toxoplasmosis seropositive pregnant women tended to present lower malaria infection during pregnancy (number) or at delivery (presence) and to have lower IgG levels to Plasmodium falciparum Apical Membrane Antigen 1, compared to toxoplasmosis seronegative women. CONCLUSIONS: The high toxoplasmosis seroprevalence indicates that prevention against this parasite remains important to deploy and must be accessible and understandable to and for all individuals (educated and non-educated). A potential protective role against malaria conferred by a preexisting toxoplasmosis infection needs to be explored more precisely to examine the environmental, parasitic and/or immune aspects.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Pregnancy Complications, Parasitic/epidemiology , Pregnant Women , Toxoplasma/isolation & purification , Toxoplasmosis/epidemiology , Adolescent , Adult , Antibodies, Protozoan/immunology , Benin/epidemiology , Female , Humans , Infant, Newborn , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Retrospective Studies , Seroepidemiologic Studies , Toxoplasmosis/blood , Toxoplasmosis/parasitology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...