Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 71: 103544, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34419925

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with spike receptor binding domain (RBD) N501Y mutation have spread globally. We evaluated the impact of N501Y on neutralizing activity of COVID-19 convalescent sera and on anti-RBD IgG assays. METHODS: The susceptibility to neutralization by COVID-19 patients' convalescent sera from Hong Kong were compared between two SARS-CoV-2 isolates (B117-1/B117-2) from the α variant with N501Y and 4 non-N501Y isolates. The effect of N501Y on antibody binding was assessed. The performance of commercially-available IgG assays was determined for patients infected with N501Y variants. FINDINGS: The microneutralization antibody (MN) titers of convalescent sera from 9 recovered COVID-19 patients against B117-1 (geometric mean titer[GMT],80; 95% CI, 47-136) were similar to those against the non-N501Y viruses. However, MN titer of these serum against B117-2 (GMT, 20; 95% CI, 11-36) was statistically significantly reduced when compared with non-N501Y viruses (P < 0.01; one-way ANOVA). The difference between B117-1 and B117-2 was confirmed by testing 60 additional convalescent sera. B117-1 and B117-2 differ by only 3 amino acids (nsp2-S512Y, nsp13-K460R, spike-A1056V). Enzyme immunoassay using 272 convalescent sera showed reduced binding of anti-RBD IgG to N501Y or N501Y-E484K-K417N when compared with that of wild-type RBD (mean difference: 0.1116 and 0.5613, respectively; one-way ANOVA). Of 7 anti-N-IgG positive sera from patients infected with N501Y variants (collected 9-14 days post symptom onset), 6 (85.7%) tested negative for a commercially-available anti-S1-IgG assay. FUNDING: Richard and Carol Yu, Michael Tong, and the Government Consultancy Service (see acknowledgments for full list). INTERPRETATION: We highlighted the importance of using a panel of viruses within the same lineage to determine the impact of virus variants on neutralization. Furthermore, clinicians should be aware of the potential reduced sensitivity of anti-RBD IgG assays.


Subject(s)
COVID-19/therapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/ultrastructure , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunization, Passive , Male , Middle Aged , Mutation/genetics , Neutralization Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
2.
Nat Commun ; 12(1): 4635, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330908

ABSTRACT

SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 µg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/pharmacology , Antibodies, Viral/ultrastructure , Binding Sites/immunology , COVID-19/prevention & control , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Female , Humans , Mass Spectrometry/methods , Mesocricetus , Mice, Inbred C57BL , Neutralization Tests , Protein Binding/drug effects , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
3.
Cell Res ; 31(5): 517-525, 2021 05.
Article in English | MEDLINE | ID: mdl-33731853

ABSTRACT

Neutralizing monoclonal antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent promising candidates for clinical intervention against coronavirus disease 2019 (COVID-19). We isolated a large number of nAbs from SARS-CoV-2-infected individuals capable of disrupting proper interaction between the receptor binding domain (RBD) of the viral spike (S) protein and the receptor angiotensin converting enzyme 2 (ACE2). However, the structural basis for their potent neutralizing activity remains unclear. Here, we report cryo-EM structures of the ten most potent nAbs in their native full-length IgG-form or in both IgG-form and Fab-form bound to the trimeric S protein of SARS-CoV-2. The bivalent binding of the full-length IgG is found to associate with more RBDs in the "up" conformation than the monovalent binding of Fab, perhaps contributing to the enhanced neutralizing activity of IgG and triggering more shedding of the S1 subunit from the S protein. Comparison of a large number of nAbs identified common and unique structural features associated with their potent neutralizing activities. This work provides a structural basis for further understanding the mechanism of nAbs, especially through revealing the bivalent binding and its correlation with more potent neutralization and the shedding of S1 subunit.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Host-Pathogen Interactions , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/ultrastructure , Models, Molecular , Protein Conformation , Protein Multimerization , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
4.
Proc Natl Acad Sci U S A ; 117(44): 27637-27645, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33087569

ABSTRACT

Chikungunya virus (CHIKV) is an emerging viral pathogen that causes both acute and chronic debilitating arthritis. Here, we describe the functional and structural basis as to how two anti-CHIKV monoclonal antibodies, CHK-124 and CHK-263, potently inhibit CHIKV infection in vitro and in vivo. Our in vitro studies show that CHK-124 and CHK-263 block CHIKV at multiple stages of viral infection. CHK-124 aggregates virus particles and blocks attachment. Also, due to antibody-induced virus aggregation, fusion with endosomes and egress are inhibited. CHK-263 neutralizes CHIKV infection mainly by blocking virus attachment and fusion. To determine the structural basis of neutralization, we generated cryogenic electron microscopy reconstructions of Fab:CHIKV complexes at 4- to 5-Å resolution. CHK-124 binds to the E2 domain B and overlaps with the Mxra8 receptor-binding site. CHK-263 blocks fusion by binding an epitope that spans across E1 and E2 and locks the heterodimer together, likely preventing structural rearrangements required for fusion. These results provide structural insight as to how neutralizing antibody engagement of CHIKV inhibits different stages of the viral life cycle, which could inform vaccine and therapeutic design.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Aedes , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/therapeutic use , Antibodies, Viral/ultrastructure , Binding Sites/drug effects , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chlorocebus aethiops , Cryoelectron Microscopy , Disease Models, Animal , Humans , Immunoglobulins/metabolism , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Vero Cells , Viral Fusion Proteins/antagonists & inhibitors , Viral Fusion Proteins/immunology , Virus Attachment/drug effects
5.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32941803

ABSTRACT

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Subject(s)
Coronavirus Infections/drug therapy , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Variable Region/administration & dosage , Peptide Library , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antibody Affinity , COVID-19 , Cricetinae , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/ultrastructure , Mice , Mice, Inbred BALB C , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , COVID-19 Drug Treatment
6.
Nature ; 584(7821): 450-456, 2020 08.
Article in English | MEDLINE | ID: mdl-32698192

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/analysis , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Disease Models, Animal , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/ultrastructure , Female , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Lung/pathology , Lung/virology , Male , Mesocricetus , Models, Molecular , Neutralization Tests , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure
7.
Nat Struct Mol Biol ; 27(9): 846-854, 2020 09.
Article in English | MEDLINE | ID: mdl-32661423

ABSTRACT

The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (KD of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody-RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD-ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4-6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Receptors, Virus/metabolism , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/metabolism , Antibodies, Viral/ultrastructure , Antibody Affinity , Antigen-Antibody Reactions/immunology , Betacoronavirus/metabolism , Binding, Competitive , COVID-19 , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Models, Molecular , Peptide Library , Peptidyl-Dipeptidase A/ultrastructure , Protein Binding , Protein Conformation , Receptors, Virus/ultrastructure , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2 , Sequence Homology, Amino Acid , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
8.
Cell Host Microbe ; 27(2): 249-261.e5, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32027857

ABSTRACT

Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms-the mature virion, A-particle, and empty particle-and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.


Subject(s)
Antibodies, Neutralizing , Enterovirus A, Human/immunology , Hand, Foot and Mouth Disease/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Capsid Proteins/immunology , Cell Line , Cryoelectron Microscopy , Enterovirus/immunology , Enterovirus/ultrastructure , Enterovirus A, Human/ultrastructure , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/prevention & control , Humans , Mice , Viral Vaccines/immunology , Virion/immunology
9.
Virol Sin ; 35(1): 1-13, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31916022

ABSTRACT

Antibodies play critical roles in neutralizing viral infections and are increasingly used as therapeutic drugs and diagnostic tools. Structural studies on virus-antibody immune complexes are important for better understanding the molecular mechanisms of antibody-mediated neutralization and also provide valuable information for structure-based vaccine design. Cryo-electron microscopy (cryo-EM) has recently matured as a powerful structural technique for studying bio-macromolecular complexes. When combined with X-ray crystallography, cryo-EM provides a routine approach for structurally characterizing the immune complexes formed between icosahedral viruses and their antibodies. In this review, recent advances in the structural understanding of virus-antibody interactions are outlined for whole virions with icosahedral T = pseudo 3 (picornaviruses) and T = 3 (flaviviruses) architectures, focusing on the dynamic nature of viral shells in different functional states. Glycoprotein complexes from pleomorphic enveloped viruses are also discussed as immune complex antigens. Improving our understanding of viral epitope structures using virus-based platforms would provide a fundamental road map for future vaccine development.


Subject(s)
Antibodies, Viral/ultrastructure , Antigen-Antibody Complex/ultrastructure , Cryoelectron Microscopy , Virion/ultrastructure , Animals , Antibodies, Viral/immunology , Epitopes/immunology , Epitopes/ultrastructure , Flavivirus/immunology , Flavivirus/ultrastructure , Humans , Picornaviridae/immunology , Picornaviridae/ultrastructure , Protein Binding , Protein Conformation , Virion/immunology
10.
Cell Host Microbe ; 26(6): 729-738.e4, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31757767

ABSTRACT

Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes/ultrastructure , Neuraminidase , Orthomyxoviridae Infections/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antiviral Agents/immunology , Cryoelectron Microscopy , Epitopes/immunology , Epitopes/metabolism , Humans , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines , Neuraminidase/chemistry , Neuraminidase/ultrastructure , Orthomyxoviridae Infections/prevention & control , Viral Proteins/chemistry , Viral Proteins/ultrastructure
11.
Nat Commun ; 10(1): 3068, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296843

ABSTRACT

Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/blood , Antibodies, Viral/metabolism , Antibodies, Viral/ultrastructure , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/blood , Coronavirus Infections/virology , Crystallography, X-Ray , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Epitope Mapping , Epitopes/immunology , Female , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/metabolism , Neutralization Tests , Protein Binding/immunology , Protein Domains/immunology , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , Vero Cells , Virus Internalization
12.
Science ; 362(6414): 598-602, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30385580

ABSTRACT

Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelids, New World/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Crystallography, X-Ray , Dogs , Female , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptide Library , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Domain Antibodies
13.
Virology ; 518: 369-376, 2018 05.
Article in English | MEDLINE | ID: mdl-29604478

ABSTRACT

Adeno-associated viruses (AAVs) are being developed as vectors for the treatment of genetic disorders. However, pre-existing antibodies present a significant limitation to achieving optimal efficacy for the AAV gene delivery system. Efforts aimed at engineering vectors with the ability to evade the immune response include identification of residues on the virus capsid important for these interactions and changing them. Here K531 is identified as the determinant of monoclonal antibody ADK6 recognition by AAV6, and not the closely related AAV1. The AAV6-ADK6 complex structure was determined by cryo-electron microscopy and the footprint confirmed by cell-based assays. The ADK6 footprint overlaps previously identified AAV antigenic regions and neutralizes by blocking essential cell surface glycan attachment sites. This study thus expands the available repertoire of AAV-antibody information that can guide the design of host immune escaping AAV vectors able to maintain capsid functionality.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Parvovirinae/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Capsid Proteins/immunology , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Dependovirus , Parvovirinae/ultrastructure , Protein Binding
14.
J Biol Chem ; 293(1): 390-401, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29123031

ABSTRACT

Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.


Subject(s)
Antibodies, Viral/ultrastructure , Cell Adhesion Molecules/immunology , Viral Envelope Proteins/chemistry , Antibodies/metabolism , Antibodies/physiology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/physiology , Antigens, Viral/immunology , Crystallography, X-Ray/methods , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Humans , Neutralization Tests , Protein Binding , Structure-Activity Relationship , Vaccinia virus/immunology , Viral Envelope Proteins/immunology
15.
J Mol Biol ; 429(12): 1829-1839, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28506635

ABSTRACT

Structure-based vaccine design depends on extensive structural analyses of antigen-antibody complexes.Single-particle electron cryomicroscopy (cryoEM) can circumvent some of the problems of x-ray crystallography as a pipeline for obtaining the required structures. We have examined the potential of single-particle cryoEM for determining the structure of influenza-virus hemagglutinin (HA):single-chain variable-domain fragment complexes, by studying a complex we failed to crystallize in pursuing an extended project on the human immune response to influenza vaccines.The result shows that a combination of cryoEM and molecular modeling can yield details of the antigen-antibody interface, although small variation in the twist of the rod-likeHA trimer limited the overall resolution to about 4.5Å.Comparison of principal 3D classes suggests ways to modify the HA trimer to overcome this limitation. A closely related antibody from the same donor did yield crystals when bound with the same HA, giving us an independent validation of the cryoEM results.The two structures also augment our understanding of receptor-binding site recognition by antibodies that neutralize a wide range of influenza-virus variants.


Subject(s)
Antibodies, Viral/ultrastructure , Antigens, Viral/ultrastructure , Hemagglutinin Glycoproteins, Influenza Virus/ultrastructure , Antibodies, Viral/chemistry , Antigens, Viral/chemistry , Binding Sites , Cryoelectron Microscopy , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/ultrastructure , Models, Molecular , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/ultrastructure
16.
Nat Commun ; 7: 13679, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27882950

ABSTRACT

The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event-a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Zika Virus/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Cross Reactions/immunology , Cryoelectron Microscopy , Dengue Virus/immunology , Hydrogen-Ion Concentration , Zika Virus/ultrastructure
17.
Science ; 352(6287): 828-33, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27174988

ABSTRACT

The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Viral Fusion Proteins/immunology , Amino Acid Sequence , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , B-Lymphocytes/immunology , B-Lymphocytes/virology , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Immunodominant Epitopes/immunology , Molecular Sequence Data , Peptides/immunology , Protein Conformation , Virus Internalization
18.
Nat Commun ; 6: 8176, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365435

ABSTRACT

Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigens, Viral/metabolism , Immunoglobulin Fab Fragments/metabolism , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Antigens, Viral/chemistry , Antigens, Viral/ultrastructure , Crystallization , Crystallography, X-Ray , Cytomegalovirus/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/ultrastructure , Immunoprecipitation , Microscopy, Electron , Mutagenesis, Site-Directed , Protein Conformation , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/ultrastructure , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/ultrastructure
19.
PLoS Pathog ; 11(7): e1005035, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26161532

ABSTRACT

Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.


Subject(s)
Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Epitopes, B-Lymphocyte/ultrastructure , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Chromatography, Gel , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Flow Cytometry , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/ultrastructure , Humans , Protein Structure, Quaternary , Surface Plasmon Resonance
20.
Elife ; 2: e00435, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23577234

ABSTRACT

A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI:http://dx.doi.org/10.7554/eLife.00435.001.


Subject(s)
Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Chikungunya virus/ultrastructure , Vaccines, Virus-Like Particle/ultrastructure , Viral Envelope Proteins/ultrastructure , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites , Chikungunya virus/immunology , Chikungunya virus/metabolism , Chikungunya virus/pathogenicity , Cryoelectron Microscopy , Crystallography, X-Ray , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fab Fragments/ultrastructure , Models, Molecular , Protein Binding , Protein Conformation , Vaccines, Virus-Like Particle/metabolism , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virion/immunology , Virion/metabolism , Virion/ultrastructure , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...