Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.094
Filter
1.
Methods Mol Biol ; 2807: 163-171, 2024.
Article in English | MEDLINE | ID: mdl-38743228

ABSTRACT

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Subject(s)
Chromatin Immunoprecipitation , Genome, Viral , Histones , Retroviridae , Histones/metabolism , Humans , Chromatin Immunoprecipitation/methods , Retroviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Animals , DNA, Viral/genetics , Antibodies/immunology
2.
AAPS J ; 26(3): 60, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730115

ABSTRACT

Subcutaneous (SC) administration of therapeutic proteins is perceived to pose higher risk of immunogenicity when compared with intravenous (IV) route of administration (RoA). However, systematic evaluations of clinical data to support this claim are lacking. This meta-analysis was conducted to compare the immunogenicity of the same therapeutic protein by IV and SC RoA. Anti-drug antibody (ADA) data and controlling variables for 7 therapeutic proteins administered by both IV and SC routes across 48 treatment groups were analyzed. RoA was the primary independent variable of interest while therapeutic protein, patient population, adjusted dose, and number of ADA samples were controlling variables. Analysis of variance was used to compare the ADA incidence between IV and SC RoA, while accounting for controlling variables and potential interactions. Subsequently, 10 additional therapeutic proteins with ADA data published for both IV and SC administration were added to the above 7 therapeutic proteins and were evaluated for ADA incidence. RoA had no statistically significant effect on ADA incidence for the initial dataset of 7 therapeutic proteins (p = 0.55). The only variable with a significant effect on ADA incidence was the therapeutic protein. None of the other controlling variables, including their interactions with RoA, was significant. When all data from the 17 therapeutic proteins were pooled, there was no statistically significant effect of RoA on ADA incidence (p = 0.81). In conclusion, there is no significant difference in ADA incidence between the IV and SC RoA, based on analysis of clinical ADA data from 17 therapeutic proteins.


Subject(s)
Administration, Intravenous , Humans , Injections, Subcutaneous , Antibodies/administration & dosage , Antibodies/immunology , Proteins/administration & dosage , Proteins/immunology
3.
Nat Commun ; 15(1): 3657, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719795

ABSTRACT

Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.


Subject(s)
Fluorescent Antibody Technique , Humans , Fluorescent Antibody Technique/methods , Signal Transduction , Antibodies/immunology , Animals , In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Single Molecule Imaging/methods
4.
Biom J ; 66(4): e2300171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38785212

ABSTRACT

Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B-cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of 71 % $71\%$ with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.


Subject(s)
B-Lymphocytes , Immunoglobulin Class Switching , B-Lymphocytes/immunology , Animals , Biometry/methods , Recombination, Genetic , Antibodies/immunology , Mice , Humans
5.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786041

ABSTRACT

Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.


Subject(s)
CX3C Chemokine Receptor 1 , Flow Cytometry , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Monocytes/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Mice , Antibodies/immunology , Genes, Reporter , Phenotype , Mice, Inbred C57BL , Mice, Transgenic , Green Fluorescent Proteins/metabolism , Antigens, Ly/metabolism , Antigens, Ly/genetics
6.
Acta Neuropathol ; 147(1): 87, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761203

ABSTRACT

Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.


Subject(s)
Antibodies , Blotting, Western , Brain , Immunohistochemistry , tau Proteins , tau Proteins/metabolism , tau Proteins/immunology , Humans , Immunohistochemistry/methods , Antibodies/immunology , Brain/metabolism , Brain/pathology , Phosphorylation , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Reproducibility of Results
7.
Curr Protoc ; 4(5): e1061, 2024 May.
Article in English | MEDLINE | ID: mdl-38775006

ABSTRACT

Cytokines constitute a class of secreted proteins that activate transmembrane receptors to coordinate a vast array of physiological processes, particularly those related to immune activity. Due to their vital role in immune regulation, cytokines have garnered great interest as potential therapeutic agents. Unfortunately, the clinical success of cytokine drugs has been limited by their multifunctional activities, which hinder therapeutic performance and lead to harmful toxicities. In addition, the strikingly short circulation half-life of cytokines further hampers their efficacy as drugs. To overcome the translational challenges associated with natural cytokines, significant efforts have focused on engineering cytokines to target their activities and improve their pharmacological properties. One such strategy is the design of fusion proteins that tether a cytokine to an anti-cytokine antibody that selectively biases its functions and extends its serum half-life. These cytokine/antibody fusion proteins (termed immunocytokines) assemble intramolecularly to bias cytokine signaling behavior through multi-layered structural and molecular effects. Here, we present a detailed workflow for the design, production, and functional validation of intramolecularly assembled immunocytokines. In-depth procedures are presented for gene manipulation, mammalian cell-based expression and purification, binding analysis via bio-layer interferometry, and interrogation of cytokine signaling activity on human primary cells. In contrast with immunocytokines in which the tethered cytokine and antibody do not bind one another, intramolecularly assembled immunocytokines require special considerations with respect to their production to avoid oligomerization and/or aggregation. The protocol herein was developed based on experience with immunocytokines that incorporate interleukin-2 (IL-2); however, this modular approach can be extended to any cytokine of interest for a broad range of biomedical applications. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Design and generation of immunocytokine genes Basic Protocol 2: Immunocytokine expression and purification Basic Protocol 3: Validation of immunocytokine assembly and binding by bio-layer interferometry Basic Protocol 4: Analysis of immunocytokine signaling on human primary cells.


Subject(s)
Cytokines , Recombinant Fusion Proteins , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Cytokines/metabolism , Protein Engineering/methods , Antibodies/immunology , Antibodies/chemistry , Interferometry , Animals , HEK293 Cells
8.
Article in English | MEDLINE | ID: mdl-38762268

ABSTRACT

Antibodies play a crucial role in host defense against various diseases. Antibody engineering is a multidisciplinary field that seeks to improve the quality of life of humans. In the context of disease, antibodies are highly specialized proteins that form a critical line of defense against pathogens and the disease caused by them. These infections trigger the innate arm of immunity by presenting on antigen-presenting cells such as dendritic cells. This ultimately links to the adaptive arm, where antibody production and maturation occur against that particular antigen. Upon binding with their specific antigens, antibodies trigger various immune responses to eliminate pathogens in a process called complement-dependent cytotoxicity and phagocytosis of invading microorganisms by immune cells or induce antibody-dependent cellular cytotoxicity is done by antibodies. These engineered antibodies are being used for various purposes, such as therapeutics, diagnostics, and biotechnology research. Cutting-edge techniques that include hybridoma technology, transgenic mice, display techniques like phage, yeast and ribosome displays, and next-generation sequencing are ways to engineer antibodies and mass production for the use of humankind. Considering the importance of antibodies in protecting from a diverse array of pathogens, investing in research holds great promise to develop future therapeutic targets to combat various diseases.


Subject(s)
Antibodies , Protein Engineering , Humans , Animals , Antibodies/immunology , Antibodies/therapeutic use , Antibodies/chemistry
9.
Adv Protein Chem Struct Biol ; 140: 37-57, 2024.
Article in English | MEDLINE | ID: mdl-38762275

ABSTRACT

For decades, antibodies have remained the archetypal binding proteins that can be rapidly produced with high affinity and specificity against virtually any target. A conventional antibody is still considered the prototype of a binding molecule. It is therefore not surprising that antibodies are routinely used in basic scientific and biomedical research, analytical workflows, molecular diagnostics etc. and represent the fastest growing sector in the field of biotechnology. However, several limitations associated with conventional antibodies, including stringent requirement of animal immunizations, mammalian cells for expression, issues on stability and aggregation, bulkier size and the overall time and cost of production has propelled evolution of concepts along alternative antigen binders. Rapidly evolving protein engineering approaches and high throughput screening platforms have further complemented the development of myriads of classes of non-conventional protein binders including antibody derived as well as non-antibody based molecular scaffolds. These non-canonical binders are finding use across disciplines of which diagnostics and therapeutics are the most noteworthy.


Subject(s)
Antibodies , Antigens , Protein Engineering , Humans , Antigens/immunology , Antigens/chemistry , Animals , Antibodies/immunology , Antibodies/chemistry
10.
Int J Biol Macromol ; 268(Pt 2): 131697, 2024 May.
Article in English | MEDLINE | ID: mdl-38688333

ABSTRACT

Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.


Subject(s)
Enzymes, Immobilized , Hymecromone , alpha-Glucosidases , Enzymes, Immobilized/chemistry , alpha-Glucosidases/chemistry , alpha-Glucosidases/immunology , Hymecromone/chemistry , Hymecromone/analogs & derivatives , Biocatalysis , Enzyme Stability , Hydrolysis , Biomimetics/methods , Kinetics , Antibodies/chemistry , Antibodies/immunology , Biomimetic Materials/chemistry , Antigen-Antibody Complex/chemistry , Hydrogen-Ion Concentration
11.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L727-L735, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591123

ABSTRACT

Respiratory infection, cancer, and heart failure can cause abnormal accumulation of fluid in the pleural cavity. The immune responses within the cavity are orchestrated by leucocytes that reside in the serosal-associated lymphoid tissue. Natural antibodies (NAbs) are abundant in the serum (S) having a major role in systemic and mucosal immunity; however, their occurrence in pleural fluid (PF) remains an open question. Our aim herein was to detect and measure the levels of NAbs (IgM, IgG, IgA) targeting lipopolysaccharides (LPS) in both the pleural fluid and the serum of 78 patients with pleural effusions (PEs) of various etiologies. The values of anti-LPS NAb activity were extracted through a normalization step regarding the total IgM, IgG, and IgA levels, all determined by in-house ELISA. In addition, the ratios of PF/S values were analyzed further with other critical biochemical parameters from pleural fluids. Anti-LPS NAbs of all Ig classes were detected in most of the samples, while a significant increase of anti-LPS activity was observed in infectious and noninfectious compared with malignant PEs. Multivariate linear regression confirmed a negative correlation of IgM and IgA anti-LPS PF/S ratio with malignancy. Moreover, anti-LPS NAbs PF/S measurements led to increased positive and negative predictive power in ROC curves generated for the discrimination between benign and malignant PEs. Our results highlight the role of anti-LPS NAbs in the pleural cavity and demonstrate the potential translational impact that should be further explored.NEW & NOTEWORTHY Here we describe the detection and quantification of natural antibodies (NAbs) in the human pleural cavity. We show for the first time that IgM, IgG, and IgA anti-LPS natural antibodies are detected and measured in pleural effusions of infectious, noninfectious, and malignant etiologies and provide clinical correlates to demonstrate the translational impact of our findings.


Subject(s)
Immunoglobulin M , Lipopolysaccharides , Pleural Effusion , Humans , Lipopolysaccharides/immunology , Male , Female , Middle Aged , Pleural Effusion/immunology , Pleural Effusion/metabolism , Aged , Immunoglobulin M/immunology , Immunoglobulin M/blood , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin A/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/blood , Adult , Aged, 80 and over , Antibodies/immunology
12.
Biochem J ; 481(10): 643-651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38683688

ABSTRACT

GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.


Subject(s)
Antibodies , Animals , Mice , Antibodies/immunology , Antibodies/metabolism , Mice, Knockout , Liver/metabolism , Liver/immunology , Humans , Nerve Tissue Proteins , Mitochondrial Proteins
13.
Proc Natl Acad Sci U S A ; 121(19): e2317307121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683990

ABSTRACT

Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.


Subject(s)
Epitopes , Epitopes/immunology , Humans , Proteolysis , Protein Binding , Protein Engineering/methods , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/immunology , Antibodies/immunology , Peptide Library
14.
J Am Chem Soc ; 146(17): 12074-12086, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639141

ABSTRACT

Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.


Subject(s)
RNA Polymerase II , Phosphorylation , RNA Polymerase II/metabolism , RNA Polymerase II/chemistry , Antibodies/immunology , Antibodies/chemistry , Protein Domains , Humans
15.
Food Chem ; 449: 139272, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604030

ABSTRACT

This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.


Subject(s)
Aflatoxins , Food Contamination , Green Chemistry Technology , Immunoglobulin G , Peanut Oil , Aflatoxins/analysis , Aflatoxins/immunology , Aflatoxins/isolation & purification , Food Contamination/analysis , Peanut Oil/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/chemistry , Antibodies/immunology , Antibodies/chemistry , Chromatography, High Pressure Liquid
16.
J Agric Food Chem ; 72(17): 10055-10064, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634336

ABSTRACT

Enantioselective antibodies have emerged as efficient tools in the field of chiral chemical detection and separation. However, it is complicated to obtain a highly stereoselective antibody due to the unclear recognition mechanism. In this study, the hapten of metolachlor was synthesized and enantio-separated. The absolute configuration of the four haptens obtained was identified by the computed and experimental electronic circular dichroism comparison. Five polyclonal antibodies against the Rac-metolachlor and its enantiomers were generated by immunization. The cross-activity of all the 5 antibodies with 44 structural analogues, including metolachlor enantiomers, was tested. It demonstrated that antibodies have higher specificity to recognize central chirality than axial chirality. Especially, αRR-MET-Ab exhibited excellent specificity and stereoselectivity. Accordingly, 3D-QSAR models were constructed and revealed that paired stereoisomers exhibited opposite interactions with the antibodies. It is the first time that the antibodies against four stereoisomers were prepared and analyzed, which will be conducive to the rational design of the stereoselective antibodies.


Subject(s)
Acetamides , Antibodies , Herbicides , Herbicides/chemistry , Herbicides/immunology , Stereoisomerism , Animals , Antibodies/chemistry , Antibodies/immunology , Acetamides/chemistry , Quantitative Structure-Activity Relationship , Haptens/chemistry , Haptens/immunology , Rabbits
17.
Cell Chem Biol ; 31(5): 944-954.e5, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38653243

ABSTRACT

Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.


Subject(s)
Epitopes , Humans , Epitopes/immunology , Epitopes/chemistry , Animals , Receptors, Tumor Necrosis Factor/agonists , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors , Receptors, OX40/agonists , Receptors, OX40/immunology , Receptors, OX40/metabolism , Receptors, OX40/antagonists & inhibitors , Antibodies/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacology , Mice
18.
Methods Mol Biol ; 2790: 405-416, 2024.
Article in English | MEDLINE | ID: mdl-38649583

ABSTRACT

Antibodies are a valuable research tool, with uses including detection and quantification of specific proteins. By using peptide fragments to raise antibodies, they can be designed to differentiate between structurally similar proteins, or to bind conserved motifs in divergent proteins. Peptide sequence selection and antibody validation are crucial to ensure reliable results from antibody-based experiments. This chapter describes the steps for the identification of peptide sequences to produce protein- or isoform-specific antibodies using recombinant technologies as well as the subsequent validation of such antibodies. The photosynthetic protein Rubisco activase is used as a case study to explain the various steps involved and key aspects to take into consideration.


Subject(s)
Antibodies , Protein Isoforms , Antibodies/chemistry , Antibodies/immunology , Antibodies/metabolism , Photosynthesis , Amino Acid Sequence , Plant Proteins/metabolism
19.
J Am Chem Soc ; 146(15): 10293-10298, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38569597

ABSTRACT

Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.


Subject(s)
Biotechnology , Cell Fractionation , DNA , Exosomes , Nanotechnology , DNA/chemistry , Exosomes/chemistry , Exosomes/immunology , Nanotechnology/methods , Cell Fractionation/methods , Antibodies/immunology , Biomarkers/analysis , Biotechnology/methods , Microscopy, Fluorescence , Single Molecule Imaging
20.
BMC Immunol ; 25(1): 23, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678193

ABSTRACT

BACKGROUND: Flow cytometry-based basophil activation tests (BAT) have been performed with various modifications, differing in the use of distinct identification and activation markers. Established tests use liquid reagents while a new development involves the use of tubes with dried antibody reagents. The aim of this pilot study was to compare these two techniques in patients with insect venom allergy. METHODS: Seventeen patients with an insect venom allergy were included in the study. The established "BAT 1" utilizes conventional antibody solutions of anti-CCR3 for basophil identification and anti-CD63 to assess basophil activation, whereas "BAT 2" uses dried anti-CD45, anti-CD3, anti-CRTH2, anti-203c and anti-CD63 for identification and activation measurement of basophils. Negative and positive controls as well as incubations with honey bee venom and yellow jacket venom at three concentrations were performed. RESULTS: Seven patients had to be excluded due to low basophil counts, high values in negative controls or negative positive controls. For the remaining 10 patients the overall mean (± SD) difference in activated basophils between the two tests was 0.2 (± 12.2) %P. In a Bland-Altman plot, the limit of agreement (LoA) ranged from 24.0 to -23.7. In the qualitative evaluation (value below/above cut-off) Cohen's kappa was 0.77 indicating substantial agreement. BAT 2 took longer to perform than BAT 1 and was more expensive. CONCLUSION: The BAT 2 technique represents an interesting innovation, however, it was found to be less suitable compared to an established BAT for the routine diagnosis of insect venom allergies.


Subject(s)
Basophils , Flow Cytometry , Humans , Basophils/immunology , Female , Male , Adult , Middle Aged , Flow Cytometry/methods , Arthropod Venoms/immunology , Pilot Projects , Animals , Hypersensitivity/immunology , Hypersensitivity/diagnosis , Insect Bites and Stings/immunology , Insect Bites and Stings/diagnosis , Bee Venoms/immunology , Young Adult , Aged , Antibodies/immunology , Adolescent , Basophil Degranulation Test/methods , Venom Hypersensitivity
SELECTION OF CITATIONS
SEARCH DETAIL
...