Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.395
Filter
1.
Clin Exp Med ; 24(1): 122, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856863

ABSTRACT

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).


Subject(s)
Receptors, CCR8 , T-Lymphocytes, Regulatory , Tumor Microenvironment , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Receptors, CCR8/immunology , Receptors, CCR8/antagonists & inhibitors , Animals , Mice , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Antibody-Dependent Cell Cytotoxicity , Lymphocyte Depletion , Cell Line, Tumor , Phagocytosis/drug effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use
3.
Front Immunol ; 15: 1410457, 2024.
Article in English | MEDLINE | ID: mdl-38765013

ABSTRACT

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Macaca fascicularis , Animals , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Mice, Transgenic , Apoptosis/drug effects , Antineoplastic Agents, Immunological/pharmacology , Membrane Glycoproteins
4.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738886

ABSTRACT

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Spheroids, Cellular , Humans , Antibody-Dependent Cell Cytotoxicity/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/immunology , Drug Discovery/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Cell Line, Tumor , Receptors, IgG/immunology , Antineoplastic Agents, Immunological/pharmacology , Trastuzumab/pharmacology
5.
Acta Biochim Pol ; 71: 12185, 2024.
Article in English | MEDLINE | ID: mdl-38721308

ABSTRACT

Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.


Subject(s)
Antibodies, Monoclonal , Biosensing Techniques , Cyclic AMP , Receptors, CCR8 , Humans , HEK293 Cells , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, CCR8/immunology , Receptors, CCR8/metabolism , Cyclic AMP/metabolism , Biosensing Techniques/methods , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Engineering/methods
7.
J Immunother Cancer ; 12(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782540

ABSTRACT

BACKGROUND: Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS: To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS: In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION: These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.


Subject(s)
CD47 Antigen , Immunoglobulin A , Neuroblastoma , Neutrophils , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , CD47 Antigen/immunology , Humans , Neuroblastoma/immunology , Neuroblastoma/drug therapy , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Immunoglobulin A/immunology , Immunoglobulin A/pharmacology , Immunoglobulin A/metabolism , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Immunotherapy/methods , Female , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
8.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775156

ABSTRACT

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Epitopes/immunology , Broadly Neutralizing Antibodies/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female
9.
J Pharmacol Sci ; 155(3): 84-93, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797537

ABSTRACT

The development of targeted cancer therapies based on monoclonal antibodies against tumor-associated antigens has progressed markedly over recent decades. This approach is dependent on the identification of tumor-specific, normal tissue-sparing antigenic targets. The transmembrane protein claudin-18 splice variant 2 (CLDN18.2) is frequently and preferentially displayed on the surface of primary gastric adenocarcinomas, making it a promising monoclonal antibody target. Phase 3 studies of zolbetuximab, a chimeric immunoglobulin G1 monoclonal antibody targeting CLDN18.2, combined with 5-fluorouracil/leucovorin plus oxaliplatin (modified FOLFOX6) or capecitabine plus oxaliplatin (CAPOX) in advanced or metastatic first-line gastric or gastroesophageal junction (G/GEJ) adenocarcinoma have demonstrated favorable clinical results with zolbetuximab. In studies using xenograft or syngeneic models with gastric cancer cell lines, zolbetuximab mediated death of CLDN18.2-positive human cancer cell lines via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro and demonstrated anti-tumor efficacy as monotherapy and combined with chemotherapy in vivo. Mice treated with zolbetuximab plus chemotherapy displayed a significantly higher frequency of tumor-infiltrating CD8+ T cells versus vehicle/isotype control-treated mice. Furthermore, zolbetuximab combined with an anti-mouse programmed cell death-1 antibody more potently inhibited tumor growth compared with either agent alone. These results support the potential of zolbetuximab as a novel treatment option for G/GEJ adenocarcinoma.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Claudins , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Animals , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Disease Models, Animal , Xenograft Model Antitumor Assays , Antibody-Dependent Cell Cytotoxicity/drug effects
10.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793639

ABSTRACT

African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , Epitopes, B-Lymphocyte , Immunodominant Epitopes , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Animals , Swine , Antibodies, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Immunodominant Epitopes/immunology , Immunodominant Epitopes/genetics , African Swine Fever/immunology , African Swine Fever/virology , Viral Proteins/immunology , Viral Proteins/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics
11.
Blood Cancer J ; 14(1): 67, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637557

ABSTRACT

Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.


Subject(s)
Killer Cells, Natural , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Antibody-Dependent Cell Cytotoxicity , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , B7 Antigens/metabolism , B7 Antigens/pharmacology
12.
Sci Rep ; 14(1): 7938, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575779

ABSTRACT

Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.


Subject(s)
Killer Cells, Natural , Receptors, IgG , Humans , Receptors, IgG/metabolism , Flow Cytometry , Antibody-Dependent Cell Cytotoxicity , Polysaccharides/metabolism
13.
Front Immunol ; 15: 1365172, 2024.
Article in English | MEDLINE | ID: mdl-38562932

ABSTRACT

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Subject(s)
Biotin , Receptor, ErbB-2 , Humans , Mice , Animals , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Trastuzumab/metabolism , Biotin/metabolism , Heterografts , Cell Line, Tumor , T-Lymphocytes , Antibody-Dependent Cell Cytotoxicity
14.
Biol Pharm Bull ; 47(4): 840-847, 2024.
Article in English | MEDLINE | ID: mdl-38616114

ABSTRACT

Trastuzumab, an anti-HER2 monoclonal antibody, is the mainstay treatment for of HER2-positive breast cancer. However, trastuzumab resistance is often observed during treatment. Therefore, new therapeutic strategies are needed to enhance the clinical benefits of trastuzumab. Maitake ß-glucan MD-Fraction, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. In this study, we examined the effect of MD-Fraction on trastuzumab treatment of HER2-positive breast cancer. MD-Fraction did not directly inhibit the survival of HER2-positive breast cancer cells, alone or in the presence of trastuzumab in vitro. In HER2-positive xenograft models, the combination of MD-Fraction and trastuzumab was more effective than trastuzumab alone. Peripheral blood lymphocytes and splenic natural killer cells isolated from BALB/c nu/nu mice treated with MD-Fraction showed enhanced trastuzumab-induced antibody-dependent cellular cytotoxicity (ADCC) ex vivo. MD-Fraction-treated macrophages and neutrophils did not show enhanced trastuzumab cytotoxicity in the presence of heat-inactivated serum, but they showed enhanced cytotoxicity in the presence of native serum. These results suggest that MD-Fraction-treated macrophages and neutrophils enhance trastuzumab-induced complement-dependent cellular cytotoxicity (CDCC). Treatment of HER2-positive breast cancer cells with MD-Fraction in the presence of trastuzumab and native serum increased C3a release and tumor cell lysis in a dose-dependent manner, indicating that MD-Fraction enhanced trastuzumab-induced complement-dependent cytotoxicity (CDC) by activating the complement system. This study demonstrates that the combination of trastuzumab and MD-Fraction exerts a greater antitumor effect than trastuzumab alone by enhancing ADCC, CDCC, and CDC in HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Grifola , beta-Glucans , Animals , Mice , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , beta-Glucans/pharmacology , Antibody-Dependent Cell Cytotoxicity , Adjuvants, Immunologic , Breast Neoplasms/drug therapy , Mice, Inbred BALB C
15.
Front Immunol ; 15: 1360615, 2024.
Article in English | MEDLINE | ID: mdl-38646521

ABSTRACT

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Ascites , Killer Cells, Natural , Ovarian Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascites/immunology , Female , Antibody-Dependent Cell Cytotoxicity/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Immunoglobulins/metabolism , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Degranulation/immunology , Cell Degranulation/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Cetuximab/pharmacology
16.
Nat Commun ; 15(1): 2054, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448430

ABSTRACT

Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.


Subject(s)
Antibodies, Bispecific , Hematologic Neoplasms , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , CD47 Antigen , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antibody-Dependent Cell Cytotoxicity
17.
J Med Virol ; 96(3): e29527, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511514

ABSTRACT

Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , COVID-19 Serotherapy , Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , Antibodies, Viral , Vaccination
18.
J Immunother Cancer ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490714

ABSTRACT

BACKGROUND: In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS: We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS: Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS: Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Ovarian Neoplasms , Female , Mice , Humans , Animals , Antibody-Dependent Cell Cytotoxicity , Trastuzumab , Macrophages , Ovarian Neoplasms/metabolism
19.
Front Immunol ; 15: 1336566, 2024.
Article in English | MEDLINE | ID: mdl-38510242

ABSTRACT

Introduction: About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results: By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion: Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Mice , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors , Antibody-Dependent Cell Cytotoxicity
20.
Int Immunopharmacol ; 132: 111926, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38552297

ABSTRACT

Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.


Subject(s)
B7 Antigens , Single-Chain Antibodies , B7 Antigens/immunology , B7 Antigens/metabolism , B7 Antigens/genetics , B7 Antigens/antagonists & inhibitors , Humans , Animals , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use , Cell Line, Tumor , Mice , Female , T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Mice, Inbred C57BL , Male , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Interferon-gamma/metabolism , Interferon-gamma/immunology , Antibody-Dependent Cell Cytotoxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...