Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
1.
Comput Biol Med ; 176: 108534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754217

ABSTRACT

Antifreeze proteins have wide applications in the medical and food industries. In this study, we propose a stacking-based classifier that can effectively identify antifreeze proteins. Initially, feature extraction was performed in three aspects: reduction properties, scalable pseudo amino acid composition, and physicochemical properties. A hybrid feature set comprised of the combined information from these three categories was obtained. Subsequently, we trained the training set based on LightGBM, XGBoost, and RandomForest algorithms, and the training outcomes were passed to the Logistic algorithm for matching, thereby establishing a stacking algorithm. The proposed algorithm was tested on the test set and an independent validation set. Experimental data indicates that the algorithm achieved a recognition accuracy of 98.3 %, and an accuracy of 98.5 % on the validation set. Lastly, we analyzed the reasons why numerical features achieved high recognition capabilities from multiple aspects. Data dimensionality reduction and the analysis from two-dimensional and three-dimensional views revealed separability between positive and negative samples, and the protein three-dimensional structure further demonstrated significant differences in related features between the two samples. Analysis of the classifier revealed that Hr*Hr, HrHr, and Sc-PseAAC_1, 188D(152,116,57,183) were among the seven most important numerical features affecting algorithm recognition. For Hr*Hr and HrHr, supportive sequence level evidence for the reduction dictionary was found in terms of conservation area analysis, multiple sequence alignment, and amino acid conservative substitution. Moreover, the importance of the reduction dictionary was recognized through a comparative analysis of importance before and after the reduction, realizing the effectiveness of the dictionary in improving feature importance. A decision tree model has been utilized to discern the distinctions between dipeptides associated with the physical and chemical properties of His(H), Iso(I), Leu(L), and Lys(K) and other dipeptides. We finally analyzed the other seven features of importance, and data analysis confirmed that hydrophobicity, secondary structure, charge properties, van der Waals forces, and solvent accessibility are also factors affecting the antifreeze capability of proteins.


Subject(s)
Algorithms , Antifreeze Proteins , Antifreeze Proteins/chemistry , Amino Acids/chemistry , Databases, Protein , Computational Biology/methods
2.
J Biomed Mater Res B Appl Biomater ; 112(5): e35408, 2024 May.
Article in English | MEDLINE | ID: mdl-38676958

ABSTRACT

Gelatin methacrylate (GelMA) hydrogels are expected to be ideal skin tissue engineering dressings for a wide range of clinical treatments. Herein, we report the preparation of GelMA or antifreeze GelMA hydrogel sheets with different GelMA concentrations, crosslinking times, and cryoprotectant (CPA) concentrations. The crystallization properties of GelMA or antifreeze GelMA hydrogel sheets were studied by cryomicroscopy and differential scanning calorimetry (DSC). It was found that the growth of ice crystals was slower when GelMA hydrogel concentration was more than 7%. The 10% DMSO-7% GelMA hydrogel sheets crosslinked for 60 min showed no ice crystal formation and growth during cooling and warming. The DSC results showed that the vitrification temperature of the 10% DMSO-7% GelMA hydrogel sheet was -111°C. Furthermore, slow freezing and rapid freezing of fibroblast-laden GelMA or antifreeze GelMA hydrogel sheets, and tissue-engineered skin constructs were studied. The results showed no significant difference in cell survival between slow (88.8% ± 1.51) and rapid (89.2% ± 3.00) freezing of fibroblast-loaded 10% DMSO-7% GelMA hydrogel sheets, and significantly higher than that of 7% GelMA hydrogel sheets (33.4% ± 5.46). The cell viability was higher in tissue-engineered skin constructs after slow freezing (86.34% ± 1.45) than rapid freezing (72.74% ± 1.34). We believe that the combination of antifreeze hydrogels and tissue engineering will facilitate the cryopreservation of tissue engineering constructs.


Subject(s)
Cryopreservation , Fibroblasts , Gelatin , Hydrogels , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Gelatin/chemistry , Animals , Fibroblasts/cytology , Fibroblasts/metabolism , Crystallization , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Methacrylates/chemistry , Skin/metabolism , Mice , Antifreeze Proteins/chemistry , Antifreeze Proteins/pharmacology , Humans , Cell Survival/drug effects
3.
Langmuir ; 40(14): 7395-7404, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38527127

ABSTRACT

Ice-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at -80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.


Subject(s)
Ice , alpha-Fetoproteins , Animals , Temperature , Freezing , Antifreeze Proteins/chemistry
4.
Biomolecules ; 14(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397411

ABSTRACT

Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.


Subject(s)
Cryoprotective Agents , Ice , Freezing , Crystallization , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Antifreeze Proteins/chemistry
5.
Sci Rep ; 14(1): 3234, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331970

ABSTRACT

Many polar organisms produce antifreeze proteins (AFPs) and ice-binding proteins (IBPs) to protect themselves from ice formation. As IBPs protect cells and organisms, the potential of IBPs as natural or biological cryoprotective agents (CPAs) for the cryopreservation of animal cells, such as oocytes and sperm, has been explored to increase the recovery rate after freezing-thawing. However, only a few IBPs have shown success in cryopreservation, possibly because of the presence of protein denaturants, such as dimethyl sulfoxide, alcohols, or ethylene glycol, in freezing buffer conditions, rendering the IBPs inactive. Therefore, we investigated the thermal and chemical stability of FfIBP isolated from Antarctic bacteria to assess its suitability as a protein-based impermeable cryoprotectant. A molecular dynamics (MD) simulation identified and generated stability-enhanced mutants (FfIBP_CC1). The results indicated that FfIBP_CC1 displayed enhanced resistance to denaturation at elevated temperatures and chemical concentrations, compared to wildtype FfIBP, and was functional in known CPAs while retaining ice-binding properties. Given that FfIBP shares an overall structure similar to DUF3494 IBPs, which are recognized as the most widespread IBP family, these findings provide important structural information on thermal and chemical stability, which could potentially be applied to other DUF3494 IBPs for future protein engineering.


Subject(s)
Carrier Proteins , Ice , Male , Animals , Carrier Proteins/metabolism , Semen/metabolism , Bacteria/metabolism , Freezing , Antifreeze Proteins/chemistry , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism
6.
Sci Rep ; 14(1): 477, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177218

ABSTRACT

The phase changes of soil water or porous media have a crucial influence on the performance of natural and man-made infrastructures in cold regions. While various methods have been explored to address the impacts of frost-action arising from these phase changes, conventional approaches often rely on chemicals, mechanical techniques, and the reuse of waste materials, which often exhibit certain limitations and environmental concerns. In contrast, certain organisms produce ice-binding proteins (IBPs) or antifreeze proteins (AFPs) to adapt to low temperatures, which can inhibit ice crystal growth by lowering the freezing point and preventing ice crystallization without the need for external intervention. This study explores the potential of three psychrophilic microbes: Sporosarcina psychrophile, Sporosarcina globispora, and Polaromonas hydrogenivorans, to induce non-equilibrium freezing point depression and thermal hysteresis in order to control ice lens growth in frost-susceptible soils. We hypothesize that the AFPs produced by psychrophiles will alter the phase changes of porous media in frost-susceptible soils. The growth profiles of the microbes, the concentration of released proteins in the extracellular solution, and the thermal properties of the protein-mixed soils are monitored at an interval of three days. The controlled soil showed a freezing point of - 4.59 °C and thermal hysteresis of 4.62 °C, whereas protein-treated soil showed a maximum freezing point depression of - 8.54 °C and thermal hysteresis of 7.71 °C. Interestingly, except for the controlled sample, all the protein-treated soil samples were thawed at a negative temperature (minimum recorded at - 0.85 °C). Further analysis showed that the treated soils compared to porous media mixed soil freeze (1.25 °C vs. 0.51 °C) and thaw (2.75 °C vs. 1.72 °C) at extensive temperature gap. This freezing and thawing temperature gap is the temperature difference between the beginning of ice core formation and completed frozen, and the beginning of ice core thawing and completed thawed for the treated soil samples selected from different incubation days. Overall, this study presents a novel bio-mediated approach using psychrophilic microbes to control ice formation in frost-susceptible soils.


Subject(s)
Soil , Water , Humans , Freezing , Cold Temperature , Antifreeze Proteins/chemistry
7.
Int J Biol Macromol ; 255: 128202, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979748

ABSTRACT

Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.


Subject(s)
Ice , Plant Proteins , Freezing , Plant Proteins/chemistry , Cryoprotective Agents , Antifreeze Proteins/chemistry
8.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140973, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37956730

ABSTRACT

Antifreeze proteins (AFPs) bind to ice in solutions, resulting in non-colligative freezing point depression; however, their effects on ice nucleation are not well understood. The predominant plasma AFP of winter flounder (Pseudopleuronectes americanus) is AFP6, which is an amphiphilic alpha helix. In this study, AFP6 and modified constructs were produced as fusion proteins in Escherichia coli, subjected to proteolysis when required and purified prior to use. AFP6 and its recombinant fusion precursor generated similar thermal hysteresis and bipyramidal ice crystals, whereas an inactive mutant AFP6 produced hexagonal crystals and no hysteresis. Circular dichroism spectra of the wild-type and mutant AFP6 were consistent with an alpha helix. The effects of these proteins on ice nucleation were investigated alongside non-AFP proteins using a standard droplet freezing assay. In the presence of nucleating AgI, modest reductions in the nucleation temperature occurred with the addition of mutant AFP6, and several non-AFPs, suggesting non-specific inhibition of AgI-induced ice nucleation. In these experiments, both AFP6 and its recombinant precursor resulted in lower nucleation temperatures, consistent with an additional inhibitory effect. Conversely, in the absence of AgI, AFP6 induced ice nucleation, with no other proteins showing this effect. Nucleation by AFP6 was dose-dependent, reaching a maximum at 1.5 mM protein. Nucleation by AFP6 also required an ice-binding site, as the inactive mutant had no effect. Furthermore, the absence of nucleation by the recombinant precursor protein suggested that the fusion moiety was interfering with the formation of a surface capable of nucleating ice.


Subject(s)
Flounder , Ice , Animals , Flounder/genetics , Flounder/metabolism , Antifreeze Proteins/genetics , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Freezing , Temperature
9.
J Agric Food Chem ; 71(49): 19221-19239, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37947813

ABSTRACT

Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.


Subject(s)
Cryopreservation , Ice , Freezing , Cryopreservation/methods , Food , Antifreeze Proteins/chemistry , Muscles/metabolism
10.
J Phys Chem B ; 127(49): 10469-10477, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38018897

ABSTRACT

Antifreeze proteins (AFPs) are biodegradable inhibitors that effectively prevent the formation of natural gas hydrates that block pipelines. In this study, molecular dynamics simulations were employed to establish a kinetic model of the hyperactive insect antifreeze protein (Tenebrio molitor, TmAFP) and its mutants to inhibit the growth of sI natural methane hydrate. Simulations revealed that the hydrophobic and hydrophilic groups of threonine (Thr) residues at hydrate-binding sites played a synergistic role in binding hydrates. The hydrophobic groups anchored TmAFP to the hydrate surface through residues Thr39-Thr65 by migrating pendant hydrophobic methyl groups to the hydrate semicages. The hydrophilic groups stabilized TmAFP by hydrogen bonding with water molecules and integrating them into a quasi-hydrate structure, which more effectively inhibited hydrate growth. The results suggest that the hydrate growth inhibition is attributed to both the shape complementarity and the flexibility of binding residues. The synergy between hydrophobic and hydrophilic groups provides guidance for the design of more effective hydrate inhibitors.


Subject(s)
Ice , Water , Water/chemistry , Antifreeze Proteins/chemistry , Molecular Dynamics Simulation , Binding Sites
11.
J Phys Chem Lett ; 14(48): 10727-10735, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009833

ABSTRACT

Antifreeze proteins (AFPs) bind to growing iceplanes owing to their structural complementarity nature, thereby inhibiting the ice-crystal growth by thermal hysteresis. Classification of AFPs from sequence is a difficult task due to their low sequence similarity, and therefore, the usual sequence similarity algorithms, like Blast and PSI-Blast, are not efficient. Here, a method combining n-gram feature vectors and machine learning models to accelerate the identification of potential AFPs from sequences is proposed. All these n-gram features are extracted from the K-mer counting method. The comparative analysis reveals that, among different machine learning models, Xgboost outperforms others in predicting AFPs from sequence when penta-mers are used as a feature vector. When tested on an independent dataset, our method performed better compared to other existing ones with sensitivity of 97.50%, recall of 98.30%, and f1 score of 99.10%. Further, we used the SHAP method, which provides important insight into the functional activity of AFPs.


Subject(s)
Algorithms , Antifreeze Proteins , Antifreeze Proteins/chemistry , Machine Learning , Crystallization , Language
12.
Biochem Biophys Res Commun ; 682: 343-348, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37837755

ABSTRACT

Antifreeze proteins (AFPs) are multifunctional polypeptides that adsorb onto ice crystals to inhibit their growth and onto cells to protect them from nonfreezing hypothermic damage. However, the mechanism by which AFP exerts its hypothermic cell protective (HCP) function remains uncertain. Here, we assessed the HCP function of three types of fish-derived AFPs (type I, II, and III AFPs) against human T-lymphoblastic lymphoma by measuring the survival rate (%) of the cells after preservation at 4 °C for 24 h. All AFPs improved the survival rate in a concentration-dependent manner, although the HCP efficiency was inferior for type III AFP compared to other AFPs. In addition, after point mutations were introduced into the ice-binding site (IBS) of a type III AFP, HCP activity was dramatically increased, suggesting that the IBS of AFP is involved in cell adsorption. Significantly, high HCP activity was observed for a mutant that exhibited poorer antifreeze activity, indicating that AFP exerts HCP- and ice-binding functions through a different mechanism. We next incubated the cells in an AFP-containing solution, replaced it with pure EC solution, and then preserved the cells, showing that no significant reduction in the cell survival rate occurred for type I and II AFPs even after replacement. Thus, these AFPs irreversibly bind to the cells at 4 °C, and only tightly adsorbed AFP molecules contribute towards the cell-protection function.


Subject(s)
Ice , alpha-Fetoproteins , Animals , Humans , Binding Sites , Antifreeze Proteins/genetics , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Biophysical Phenomena , Fish Proteins/genetics
13.
Nano Lett ; 23(20): 9500-9507, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37843112

ABSTRACT

This study reports the formation of self-assembled nanostructures with homo-oligopeptides consisting of amino acids (i.e., alanine, threonine, valine, and tyrosine), the resulting morphologies (i.e., spherical shape, layered structure, and wire structure) in aqueous solution, and their potential as ice growth inhibitors. Among the homo-oligopeptides investigated, an alanine homo-oligopeptide (n = 5) with a spherical nanostructure showed the highest ice recrystallization inhibition (IRI) activity without showing a burst ice growth property and with low ice nucleation activity. The presence of nanoscale self-assembled structures in the solution showed superior IRI activity compared to an amino acid monomer because of the higher binding affinity of structures on the growing ice crystal plane. Simulation results revealed that the presence of nanostructures induced a significant inhibition of ice growth and increased lifetime of hydrogen bonding compared with unassembled homo-oligopeptide. These results envision extraordinary performance for self-assembled nanostructures as a desirable and potent ice growth inhibitor.


Subject(s)
Antifreeze Proteins , Ice , Antifreeze Proteins/chemistry , Crystallization , Amino Acids , Alanine , Oligopeptides
14.
J Am Chem Soc ; 145(32): 17597-17602, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37527507

ABSTRACT

Antifreeze proteins (AFPs) facilitate the survival of diverse organisms in frigid environments by adsorbing to ice crystals and suppressing their growth. The rate of AFP accumulation on ice is determined by an interplay between AFP diffusion from the bulk solution to the ice-water interface and the subsequent adsorption of AFPs to the interface. To interrogate the relative importance of these two processes, here, we combine nonequilibrium fluorescence experiments with a reaction-diffusion model. We find that as diverse AFPs accumulate on ice, their concentration in the aqueous solution does not develop a gradient but remains equal to its bulk concentration throughout our experiments. These findings lead us to conclude that AFP accumulation on ice crystals, which are smaller than 100 µm in radius, is not limited by the diffusion of AFPs, but by the kinetics of AFP adsorption. Our results imply that mass transport limitations do not hinder AFPs from performing their biological function.


Subject(s)
Ice , alpha-Fetoproteins , Adsorption , Antifreeze Proteins/chemistry , Water
15.
J Phys Chem B ; 127(27): 6038-6048, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37395194

ABSTRACT

Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.


Subject(s)
Antifreeze Proteins , Ice , Antifreeze Proteins/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins , Water/chemistry
16.
Planta ; 258(2): 44, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460860

ABSTRACT

MAIN CONCLUSION: Conjugated sugars showed antifreeze activity in the cuticle by ice recrystallization inhibition rather than thermal hysteresis, enhancing freezing capacity at the surface of B. juncea leaves. Antifreeze biomolecules play a crucial role in mitigating the physical damage from frost by controlling extracellular ice crystal growth in plants. Antifreeze proteins (AFPs) are reported from the apoplast of different plants. Interestingly, there is no report about antifreeze properties of the cuticle. Here, we report the potential antifreeze activity in the Brassica juncea (BJ) leaf cuticle. Nano LC-MS/MS analysis of a cuticle protein enriched fraction (CPE) predicted over 30 putative AFPs using CryoProtect server and literature survey. Ice crystal morphology (ICM) and ice recrystallization inhibition (IRI) analysis of ABC supernatant showed heat and pronase-resistant, non-protein antifreeze activities as well as hexagonal ice crystals with TH of 0.17 °C and IRI 46%. The ZipTip processed ABC supernatant (without peptides) had no effect on TH activity, confirming a non-protein antifreeze molecule contributing to activity. To understand the origin and to confirm the source of antifreeze activity, cuticular membranes were isolated by pectinase and cellulase hydrolysis. FTIR analysis of the intact cuticle showed xylose, mannose, cellulose, and glucose. Xylanase and cellulase treatments of the ZipTip processed ABC supernatant led to an increase in sugar content and 50% loss in antifreeze activity. UV spectroscopy and NMR analysis supported the finding of FTIR and enzyme hydrolysis suggesting the contribution of xylose and mannose to antifreeze activity. By TLC analysis, conjugated sugars were found in the cuticle. This work has opened up a new research area where the antifreeze capacity needs to be established with regard to complete characterization and mechanism of action of the antifreeze carbohydrates (conjugated sugars) on the leaf surface.


Subject(s)
Cellulases , Ice , Xylose , Mannose , Mustard Plant , Tandem Mass Spectrometry , Freezing , Cryoprotective Agents/metabolism , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Plant Leaves/metabolism
17.
Langmuir ; 39(25): 8612-8622, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294179

ABSTRACT

The spatio-temporal distribution of type-III antifreeze protein (AFP-III) molecules labeled with fluorescent isocyanate (FITC) was visualized at the interfaces between ice and solutions with an FITC-labeled AFP-III (F-AFP-III) concentration of 20-800 µg/mL by fluorescence microscopy. The number density of F-AFP-III on the surface of ice microcrystals was calculated from the calibrated fluorescence intensity. The adsorption of F-AFP-III molecules on the ice crystal surfaces proceeded at a finite rate and then reached the saturation level. The time course of the number density of adsorbed F-AFP-III molecules could be well represented by Langmuir's model. The characteristic adsorption time of F-AFP-III, the adsorption coefficient k1 = (0.5 ± 0.05) × 10-4 (µg/mL)-1 s-1, and the desorption coefficient k2 = 0.005 ± 0.002 s-1 were determined using the Langmuir's model and obtained experimental data. We found that the adsorption of F-AFP-III could have different kinetics depending on the solution conditions and the type of fluorescence molecules conjugated with AFP-III.


Subject(s)
Ice , alpha-Fetoproteins , Adsorption , Kinetics , Fluorescein-5-isothiocyanate , Antifreeze Proteins/chemistry
18.
Sci Rep ; 13(1): 8880, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264058

ABSTRACT

Antifreeze proteins (AFPs) bind to ice crystals to prevent organisms from freezing. A diversity of AFP folds has been found in fish and insects, including alpha helices, globular proteins, and several different beta solenoids. But the variety of AFPs in flightless arthropods, like Collembola, has not yet been adequately assessed. Here, antifreeze activity was shown to be present in 18 of the 22 species of Collembola from cold or temperate zones. Several methods were used to characterize these AFPs, including isolation by ice affinity purification, MALDI mass spectrometry, amino acid composition analysis, tandem mass spectrometry sequencing, transcriptome sequencing, and bioinformatic investigations of sequence databases. All of these AFPs had a high glycine content and were predicted to have the same polyproline type II helical bundle fold, a fold unique to Collembola. These Hexapods arose in the Ordovician Period with the two orders known to produce AFPs diverging around 400 million years ago during the Andean-Saharan Ice Age. Therefore, it is likely that the AFP arose then and persisted in many lineages through the following two ice ages and intervening warm periods, unlike the AFPs of fish which arose independently during the Cenozoic Ice Age beginning ~ 30 million years ago.


Subject(s)
Antifreeze Proteins, Type II , Arthropods , Animals , alpha-Fetoproteins , Arthropods/genetics , Arthropods/metabolism , Antifreeze Proteins/chemistry , Fishes/genetics , Fishes/metabolism , Insecta/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Proc Natl Acad Sci U S A ; 120(27): e2220380120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364125

ABSTRACT

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.


Subject(s)
Flounder , Ice , Animals , Antifreeze Proteins/chemistry , Caspase 1
20.
Chem Commun (Camb) ; 59(46): 7028-7031, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37128894

ABSTRACT

Ice crystals can cause great damage. The utilization of antifreeze agents is an efficient method to prevent or reduce ice crystal formation and growth. Synthetic antifreeze agents are toxic and have low efficiency, and natural antifreeze proteins suffer from high cost and low stability. Here, we have designed and synthesized a series of peptoid oligomers by mimicking the antifreeze protein structure, and the structure-property relationship was also studied. The reported peptoids here have excellent antifreeze properties and are nontoxic to cells. These novel peptoid materials have great potential to replace current commonly used antifreeze agents, such as dimethyl sulfoxide, and become a new generation of antifreeze agents applied in cryopreservation.


Subject(s)
Ice , Peptoids , Biomimetics , Peptoids/pharmacology , Cryoprotective Agents/chemistry , Cryopreservation/methods , Antifreeze Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...