Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.687
Filter
1.
PLoS One ; 19(6): e0302440, 2024.
Article in English | MEDLINE | ID: mdl-38870165

ABSTRACT

Rhizoctonia solani, the causative agent of sheath blight disease in rice, poses a significant threat to agricultural productivity. Traditional management approaches involving chemical fungicides have been effective but come with detrimental consequences for the ecosystem. This study aimed to investigate sustainable alternatives in the form of antifungal peptides derived from Solanaceous plant species as potential agents against R. solani. Peptide extracts were obtained using an optimized antimicrobial peptide (AMP) extraction method and desalted using the solid-phase extraction technique. The antifungal potential of peptide-rich extracts from Solanum tuberosum and Capsicum annum was assessed through in vitro tests employing the agar well diffusion method. Furthermore, peptide-protein docking analysis was performed on HPEPDOCK and HDOCK server; and molecular dynamics simulations (MDS) of 100 ns period were performed using the Gromacs 2020.4. The results demonstrated significant inhibition zones for both extracts at concentrations of 100 mg/mL. Additionally, the extracts of Solanum tuberosum and Capsicum annum had minimum inhibitory concentrations of 50 mg/mL and 25 mg/mL, respectively with minimum fungicidal concentrations of 25 mg/mL. Insights into the potential mechanisms of key peptides inhibiting R. solani targets were gleaned from in-silico studies. Notably, certain AMPs exhibited favorable free energy of binding against pathogenicity-related targets, including histone demethylase, sortin nexin, and squalene synthase, in protein-peptide docking simulations. Extended molecular dynamics simulations lasting 100 ns and MM-PBSA calculations were performed on select protein-peptide complexes. AMP10 displayed the most favorable binding free energy against all target proteins, with AMP3, AMP12b, AMP6, and AMP15 also exhibiting promising results against specific targets of R. solani. These findings underscore the potential of peptide extracts from S. tuberosum and C. annum as effective antifungal agents against rice sheath blight caused by R. solani.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Oryza , Plant Diseases , Rhizoctonia , Oryza/microbiology , Plant Diseases/microbiology , Rhizoctonia/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Solanum tuberosum/microbiology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solanaceae/chemistry , Microbial Sensitivity Tests , Computer Simulation , Capsicum/microbiology , Capsicum/chemistry
2.
Carbohydr Res ; 541: 109170, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830279

ABSTRACT

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Subject(s)
Antifungal Agents , Bacillus , Chitin , Chitinases , Chitinases/metabolism , Chitinases/isolation & purification , Chitinases/chemistry , Chitinases/pharmacology , Chitin/chemistry , Chitin/metabolism , Chitin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/metabolism , Bacillus/enzymology , Fusarium/enzymology , Fusarium/drug effects , Hydrogen-Ion Concentration , Temperature
3.
Microb Pathog ; 192: 106702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825090

ABSTRACT

The soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5 % NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.


Subject(s)
Anti-Bacterial Agents , Artemia , Geologic Sediments , RNA, Ribosomal, 16S , Animals , Artemia/drug effects , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Metabolomics , Culture Media/chemistry , Indonesia , Tandem Mass Spectrometry , Actinobacteria/metabolism , Actinobacteria/chemistry , Actinobacteria/genetics , Actinobacteria/classification , Microbial Sensitivity Tests , Seawater/microbiology , Gas Chromatography-Mass Spectrometry , Metabolome , Chromatography, Thin Layer , Phylogeny , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry
4.
Sci Rep ; 14(1): 13500, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38867066

ABSTRACT

The continuous search for natural product-based biopesticides from fungi isolated from untapped sources is an effective tool. In this study, we studied a pre-selected fungal endophyte, isolate Aa22, from the medicinal plant Artemisia absinthium, along with the antifungal, insect antifeedant and nematicidal compounds present in the extract. The endophyte Aa22 was identified as Stemphylium solani by molecular analysis. The antifungal activity was tested by broth microdilution against Fusarium solani, F. oxysporum, F. moniliforme and Botrytis cinerea, the insect antifeedant by choice bioassays against Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi and the in vitro mortality against the root-knot nematode Meloiydogyne javanica. The structures of bioactive compounds were determined on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The ethyl acetate extract obtained from the solid rice fermentation showed mycelial growth inhibition of fungal pathogens (EC50 0.08-0.31 mg/mL), was antifeedant to M. persicae (99%) and nematicidal (68% mortality). A bioguided fractionation led to the isolation of the new compound stempholone A (1), and the known stempholone B (2) and stemphol (3). These compounds exhibited antifeedant (EC50 0.50 mg/mL), antifungal (EC50 0.02-0.43 mg/L) and nematicidal (MLD 0.5 mg/mL) activities. The extract activities can be explained by 3 (antifungal), 1-3 (antifeedant) and 1 (nematicidal). Phytotoxicity tests on Lolium perenne and Lactuca sativa showed that the extract and 1 increased L. sativa root growth (121-130%) and 1 reduced L. perenne growth (48-49%). These results highlight the potential of the endophytic fungi Aa22 as biotechnological source of natural product-based biopesticides.


Subject(s)
Antifungal Agents , Antinematodal Agents , Endophytes , Animals , Endophytes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antinematodal Agents/pharmacology , Antinematodal Agents/isolation & purification , Antinematodal Agents/chemistry , Fusarium/drug effects , Spodoptera/drug effects , Spodoptera/growth & development , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Microbial Sensitivity Tests , Tylenchoidea/drug effects
5.
J Chromatogr A ; 1726: 464972, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38744184

ABSTRACT

The effect of internal and external magnetic fields on the separation of antifungal drugs by centrifugal acceleration thin-layer chromatography was reported for the first time. External and internal magnetic fields were applied using neodymium magnets and CoFe2O4@SiO2 ferromagnetic nanoparticles. Separation of ketoconazole and clotrimazole was performed using a mobile phase consisting of n-hexane, ethyl acetate, ethanol, and ammonia (2.0:2.0:0.5:0.2, v/v). The influence of the magnetic field on the entire chromatographic system led to changes in the properties of the stationary and mobile phases and the analytes affecting the retention factor, shape, and width of the separated rings. The extent of this impact depended on the structure of the analyte and the type and intensity of the magnetic field. In the presence of the external magnetic field, there were more significant changes in the chromatographic parameters of the drugs, especially the width of the separated rings, and ketoconazole was more affected than clotrimazole. The changes are conceivably due to the effect of the magnetic field on the analyte distribution between the stationary and mobile phases, which is also caused by the possibility of the magnetic field affecting the viscosity, surface tension, and surface free energy between the stationary and mobile phases.


Subject(s)
Antifungal Agents , Ketoconazole , Magnetic Fields , Chromatography, Thin Layer/methods , Antifungal Agents/analysis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Ketoconazole/chemistry , Ketoconazole/analysis , Clotrimazole/chemistry , Clotrimazole/analysis , Centrifugation/methods , Silicon Dioxide/chemistry
6.
Sci Rep ; 14(1): 10942, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740839

ABSTRACT

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Subject(s)
Actinobacteria , Naphthacenes , Quinones , Naphthacenes/isolation & purification , Naphthacenes/pharmacology , Quinones/isolation & purification , Quinones/pharmacology , Actinobacteria/chemistry , Actinobacteria/classification , Actinobacteria/cytology , Actinobacteria/isolation & purification , Fertilizers , Musa/microbiology , Secondary Metabolism , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line, Tumor , Humans , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology
7.
An Acad Bras Cienc ; 96(2): e20230043, 2024.
Article in English | MEDLINE | ID: mdl-38808874

ABSTRACT

Sesbania virgata (Cav.) Pers. seeds are protein sources with health and environmental benefits. In this research, proteins with lectin activity were identified in a protein fraction from S. virgata seeds (PFLA), as well its antioxidant and antimicrobial potentials, in addition to cytotoxic effects. To obtain PFLA, seed flour was homogenized in Glycine-NaOH (100 mM; pH 9.0; NaCl 150 mM) and precipitated in ammonium sulfate. PFLA concentrates bioactive lectins (32 HU/mL, 480 HU/gFa, 18.862 HU/mgP) and essential amino acids (13.36 g/100g protein). PFLA exerts antioxidant activity, acting as a promising metal chelating agent (~77% of activity). Analyzes of cell culture assay results suggest that antioxidant activity of PFLA may be associated with the recruitment of essential molecules to prevent the metabolic impairment of cells exposed to oxidative stress. PFLA (256 - 512 µg/mL) also exhibits antifungal activity, inhibiting the growth of Aspergillus flavus, Candida albicans, Candida tropicalis and Penicillium citrinum. Cytotoxic analysis indicates a tendency of low interference in the proliferation of 3T3 and HepG2 cells in the range of PFLA concentrations with biological activity. These findings support the notion that PFLA is a promising adjuvant to be applied in current policies on the management of metal ion chelation and fungal infections.


Subject(s)
Antifungal Agents , Antioxidants , Seeds , Sesbania , Seeds/chemistry , Antioxidants/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry , Sesbania/chemistry , Humans , Plant Proteins/pharmacology , Microbial Sensitivity Tests , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hep G2 Cells
8.
Phytochemistry ; 224: 114164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797256

ABSTRACT

Fungi from the genus Aspergillus are important resources for the discovery of bioactive agents. This investigation characterized the isolation, structural elucidation, and antimicrobial evaluation of 46 metabolites produced by the marine-derived fungus Aspergillus sp. ZZ1861 in rice solid and potato dextrose broth liquid media. The structures of these isolated compounds were determined based on their HRESIMS data, NMR spectral analyses, and data from ECD, NMR, and optical rotation calculations. Emericelactones F and G, 20R,25S-preshamixanthone, 20R,25R-preshamixanthone, phthalimidinic acid A, phthalimidinic acid B, aspergilol G, and 2-hydroxyemodic amide are eight previously undescribed compounds and (S)-2-(5-hydroxymethyl-2-formylpyrrol-1-yl) propionic acid lactone is reported from a natural resource for the first time. It is also the first report of the configurations of 25S-O-methylarugosin A, 25R-O-methylarugosin A, 5R-(+)-9-hydroxymicroperfuranone, and 5R-(+)-microperfuranone. Phthalimidinic acid A, phthalimidinic acid B, aspergilol G, and 2-hydroxyemodic amide have antifungal activity against Candida albicans with MIC values of 1.56, 3.12, 1.56, and 12.5 µg/mL, respectively, 20R,25S-preshamixanthone (MIC 25 µg/mL) shows antibacterial activity against Escherichia coli, and 20R,25R-preshamixanthone exhibits antimicrobial activity against all three tested pathogens of methicillin-resistant Staphylococcus aureus, E. coli, and C. albicans with MIC values of 50, 25, 25 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents , Aspergillus , Microbial Sensitivity Tests , Aspergillus/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Molecular Structure , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Structure-Activity Relationship , Candida albicans/drug effects
9.
Acta Biochim Pol ; 71: 11999, 2024.
Article in English | MEDLINE | ID: mdl-38721306

ABSTRACT

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Subject(s)
Antifungal Agents , Bacillus subtilis , Candida glabrata , Cell Membrane Permeability , Lipopeptides , Microbial Sensitivity Tests , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Bacillus subtilis/drug effects , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Humans , Cell Membrane/drug effects , Cell Membrane/metabolism
10.
Pak J Pharm Sci ; 37(2): 257-263, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767092

ABSTRACT

The objective of this study was to identify the major compounds present in Cedar tar obtained by distillation of Cedrus atlantica wood from the Taza forest (Morocco) and to evaluate its antidermatophytic activity in vitro against the three strains of dermatophytes most widespread in Morocco, considered the main prevailing causes of fungal infections of the skin, hair and nails. GC/MS analysis revealed that cedar tar is composed mainly of hydrocarbon sesquiterpenes and oxygenated sesquiterpenes, with nine major compounds identified, including α-Cedrene, ß-Cadinene, γ-Cadinene, ß-Himachelene, α-Turmerone, ß-Turmerone, Ar-tumerone, α-Atlantone and Himachalol. The evaluation of antifungal activity was carried out by the micro dilution technique. The MIC values found were 100µg/mL, 2µg/mL and 0.1µg/mL on Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis strains respectively. The observed strong antifungal activity of cedar tar is attributed to the prevalence of oxygenated and hydrocarbon sesquiterpenes, known for their established antidermatophytic properties. This study highlights the potential of the Atlas Cedar tar as an effective antifungal agent for the treatment of superficial mycoses, particularly dermatophytoses.


Subject(s)
Antifungal Agents , Arthrodermataceae , Cedrus , Microbial Sensitivity Tests , Microsporum , Microsporum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Arthrodermataceae/drug effects , Cedrus/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gas Chromatography-Mass Spectrometry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/analysis , Phytochemicals/chemistry , Morocco
11.
Fitoterapia ; 175: 105946, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575087

ABSTRACT

Four compounds (1-4) featuring with an L-rhodinose and spiroketal, possess uncommon continuous hydroxy groups in the macrolide skeleton, and a dichloro-diketopiperazine (5) were isolated from a marine derived Micromonospora sp. FIMYZ51. The determination of the relative and absolute configurations of all isolates was achieved by extensive spectroscopic analyses, single-crystal X-ray diffraction analysis, and ECD calculations. According to structural characteristic and genomic sequences, a plausible biosynthetic pathway for compound 1-4 was proposed and a spirocyclase was inferred to be responsible for the formation of the rare spirocyclic moiety. Compounds 1-4 exhibited potent antifungal activities which is equal to itraconazole against Aspergillus niger. Compounds 1-5 exhibited different degree of inhibitory activities against opportunistic pathogenic bacteria of endocarditis (Micrococcus luteus) with MIC values ranging from 0.0625 µg/mL to 32 µg/mL. Compounds 2 and 3 showed moderate cytotoxicity against drug-resistant tumor cell lines (Namalwa and U266). The result not only provides active lead-compounds, but also reveal the potential of the spirocyclase gene resources from Micromonospora sp., which highlights the promising potential of the strain for biomedical applications.


Subject(s)
Diketopiperazines , Macrolides , Micromonospora , Spiro Compounds , Molecular Structure , Diketopiperazines/pharmacology , Diketopiperazines/isolation & purification , Diketopiperazines/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Spiro Compounds/chemistry , Cell Line, Tumor , Humans , Macrolides/pharmacology , Macrolides/isolation & purification , Macrolides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry , Microbial Sensitivity Tests , China , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , Furans
12.
Mycologia ; 116(3): 355-369, 2024.
Article in English | MEDLINE | ID: mdl-38573188

ABSTRACT

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Subject(s)
Anti-Bacterial Agents , Artemia , Aspergillus flavus , Penicillium , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Artemia/drug effects , Aspergillus flavus/drug effects , Penicillium/chemistry , Penicillium/drug effects , Animals , Microbial Sensitivity Tests , Bacteria/drug effects , Rhizosphere , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
13.
Fitoterapia ; 175: 105937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565381

ABSTRACT

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Subject(s)
Ferula , Insecticides , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Ferula/chemistry , Insecticides/pharmacology , Insecticides/isolation & purification , Insecticides/chemistry , Animals , Candida albicans/drug effects , Fruit/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Molecular Docking Simulation , Food Microbiology , Microbial Sensitivity Tests , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Computer Simulation , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry
14.
J Antibiot (Tokyo) ; 77(6): 393-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594387

ABSTRACT

A new polycyclic tetramate macrolactam designated allostreptamide (1), together with four known congeners, were isolated from the culture extract of Allostreptomyces RD068384. The planar structure of the new compound was elucidated through interpretation of NMR and MS data. The absolute configuration was determined through ROESY and ECD analyses. The isolated compounds revealed antifungal potential against fourteen Candida albicans isolates with minimum inhibitory concentrations (MICs) ranging from 64 to 2048 µg ml-1. Compound 3 showed antibiofilm action and considerably reduced the viability of five isolates (36%) in the formed biofilm. The qRT-PCR revealed that 3 downregulated the BCR1, PLB2, ALS1, and SAP5 biofilm related gene expression. Therefore, 3 could be a promising antifungal therapy for C. albicans infections.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Biofilms/drug effects , Candida albicans/drug effects , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Stereoisomerism
15.
Mar Drugs ; 22(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667806

ABSTRACT

Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 µg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 µg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.


Subject(s)
Anti-Bacterial Agents , Lactams, Macrocyclic , Microbial Sensitivity Tests , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Humans , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Polyenes/pharmacology , Polyenes/isolation & purification , Polyenes/chemistry , Candida albicans/drug effects , Cell Line, Tumor , Antarctic Regions , Animals , Porifera/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
16.
Phytochemistry ; 222: 114078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574958

ABSTRACT

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Subject(s)
Alternaria , Ascomycota , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Humans , Ascomycota/chemistry , Chlorocebus aethiops , Alternaria/chemistry , Vero Cells , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Animals , Molecular Structure , Drug Screening Assays, Antitumor , Colletotrichum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Structure-Activity Relationship , MCF-7 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Dose-Response Relationship, Drug
17.
J Ethnopharmacol ; 330: 118240, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38677574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY: The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS: Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS: Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION: Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.


Subject(s)
Antifungal Agents , Drug Resistance, Multiple, Fungal , Microbial Sensitivity Tests , Plant Extracts , Plant Leaves , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Animals , Plant Extracts/pharmacology , Plant Leaves/chemistry , Candida auris/drug effects , Candida auris/isolation & purification , Fluconazole/pharmacology , Tenebrio , Drug Synergism , Brazil , Candida/drug effects , Cryptococcus neoformans/drug effects
18.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Article in English | MEDLINE | ID: mdl-38602839

ABSTRACT

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Subject(s)
Allyl Compounds , Antifungal Agents , Garlic , Microbial Sensitivity Tests , Oils, Volatile , Sulfides , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/chemical synthesis , Sulfides/pharmacology , Sulfides/chemistry , Garlic/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Allyl Compounds/isolation & purification , Allyl Compounds/chemical synthesis , Distillation , Drug Design , Botrytis/drug effects , Structure-Activity Relationship , Ascomycota/drug effects , Molecular Structure
19.
Chem Biodivers ; 21(5): e202400090, 2024 May.
Article in English | MEDLINE | ID: mdl-38486477

ABSTRACT

Streptomide (1), a new amide analogue, streptomynone (2), a new quinolinone, and ten known compounds including three aliphatic acids (3-5), two amides (6-7), four cyclic dipeptides (8-11), and an adenosine (12) were isolated from the fermentation broth of Streptomyces sp. YIM S01983 isolated from a sediment sample collected in Bendong Village, Huadong Town, Chuxiong, China. Their structures were determined by analysis of the 1D/2D-NMR and HR-ESI-MS spectra. Compound 12 presented weak antimicrobial activities against Candida albicans and Aligenes faecalis (MIC=64 µg/mL). Compounds 7 and 12 showed weak cytotoxic activity against MHCC97H.


Subject(s)
Amides , Candida albicans , Microbial Sensitivity Tests , Quinolones , Streptomyces , Streptomyces/chemistry , Streptomyces/metabolism , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Candida albicans/drug effects , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/isolation & purification , Humans , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Enterococcus faecalis/drug effects , Molecular Structure , Structure-Activity Relationship , Drug Screening Assays, Antitumor
20.
J Nat Prod ; 87(4): 705-712, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38547118

ABSTRACT

Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.


Subject(s)
Antifungal Agents , Citrinin , Colletotrichum , Penicillium , Quinolones , Penicillium/chemistry , Colletotrichum/drug effects , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/isolation & purification , Molecular Structure , Animals , Citrinin/pharmacology , Citrinin/chemistry , Citrinin/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...