Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.235
Filter
1.
PeerJ ; 12: e17498, 2024.
Article in English | MEDLINE | ID: mdl-38827305

ABSTRACT

Background: The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods: The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results: Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.


Subject(s)
Bacterial Proteins , Dysentery, Bacillary , Feces , Shigella flexneri , Humans , Feces/microbiology , Feces/chemistry , Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Shigella flexneri/immunology , Shigella flexneri/isolation & purification , Bacterial Proteins/immunology , Bacterial Proteins/analysis , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/analysis , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin A/analysis
2.
Sci Rep ; 14(1): 10375, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710737

ABSTRACT

Tuberculosis (TB) a disease caused by Mycobacterium tuberculosis (Mtb) poses a significant threat to human life, and current BCG vaccinations only provide sporadic protection, therefore there is a need for developing efficient vaccines. Numerous immunoinformatic methods have been utilized previously, here for the first time a deep learning framework based on Deconvolutional Neural Networks (DCNN) and Bidirectional Long Short-Term Memory (DCNN-BiLSTM) was used to predict Mtb Multiepitope vaccine (MtbMEV) subunits against six Mtb H37Rv proteins. The trained model was used to design MEV within a few minutes against TB better than other machine learning models with 99.5% accuracy. The MEV has good antigenicity, and physiochemical properties, and is thermostable, soluble, and hydrophilic. The vaccine's BLAST search ruled out the possibility of autoimmune reactions. The secondary structure analysis revealed 87% coil, 10% beta, and 2% alpha helix, while the tertiary structure was highly upgraded after refinement. Molecular docking with TLR3 and TLR4 receptors showed good binding, indicating high immune reactions. Immune response simulation confirmed the generation of innate and adaptive responses. In-silico cloning revealed the vaccine is highly expressed in E. coli. The results can be further experimentally verified using various analyses to establish a candidate vaccine for future clinical trials.


Subject(s)
Mycobacterium tuberculosis , Neural Networks, Computer , Tuberculosis Vaccines , Tuberculosis Vaccines/immunology , Mycobacterium tuberculosis/immunology , Humans , Molecular Docking Simulation , Vaccine Development/methods , Epitopes/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry
3.
PLoS One ; 19(5): e0294998, 2024.
Article in English | MEDLINE | ID: mdl-38713688

ABSTRACT

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Subject(s)
Bacterial Vaccines , Disease Models, Animal , Francisella tularensis , Rats, Inbred F344 , Tularemia , Vaccines, Subunit , Animals , Tularemia/prevention & control , Tularemia/immunology , Rats , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Francisella tularensis/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Glucans/immunology , Glucans/pharmacology , T-Lymphocytes/immunology , Female , Antigens, Bacterial/immunology
4.
BMC Immunol ; 25(1): 27, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706005

ABSTRACT

BACKGROUND: Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS: Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS: Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION: In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.


Subject(s)
Bacterial Vaccines , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/immunology , Bacterial Vaccines/immunology , Klebsiella Infections/immunology , Klebsiella Infections/prevention & control , Animals , Epitopes, T-Lymphocyte/immunology , Mice , Humans , Molecular Dynamics Simulation , Antigens, Bacterial/immunology , Oligodeoxyribonucleotides/immunology , Epitopes/immunology , Molecular Docking Simulation
5.
Biochem Biophys Res Commun ; 717: 150040, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718566

ABSTRACT

Mtb12, a small protein secreted by Mycobacterium tuberculosis, is known to elicit immune responses in individuals infected with the pathogen. It serves as an antigen recognized by the host's immune system. Due to its immunogenic properties and pivotal role in tuberculosis (TB) pathogenesis, Mtb12 is considered a promising candidate for TB diagnosis and vaccine development. However, the structural and functional properties of Mtb12 are largely unexplored, representing a significant gap in our understanding of M. tuberculosis biology. In this study, we present the first structure of Mtb12, which features a unique tertiary configuration consisting of four beta strands and four alpha helices. Structural analysis reveals that Mtb12 has a surface adorned with a negatively charged pocket adjacent to a central cavity. The features of these structural elements and their potential effects on the function of Mtb12 warrant further exploration. These findings offer valuable insights for vaccine design and the development of diagnostic tools.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Models, Molecular , Molecular Weight , Amino Acid Sequence , Protein Conformation , Humans
6.
BMC Infect Dis ; 24(1): 481, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730343

ABSTRACT

BACKGROUND: Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS: The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION: The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. GOV IDENTIFIER: NCT03044509.


Subject(s)
Serologic Tests , Tuberculosis , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Mycobacterium tuberculosis/immunology , Point-of-Care Testing , Prospective Studies , Serologic Tests/methods , Spain , Switzerland , Tuberculosis/diagnosis , Tuberculosis/blood
7.
PLoS One ; 19(5): e0301688, 2024.
Article in English | MEDLINE | ID: mdl-38768145

ABSTRACT

Swine atrophic rhinitis is a disease caused by Pasteurella multocida and Bordetella bronchiseptica that affects pigs. Inactivated vaccines containing the toxins produced by Pasteurella multocida and Bordetella bronchiseptica have been widely used for the prevention of swine atrophic rhinitis. The efficacy of a vaccine is correlated with the amount of antigen present; however, the protective toxin of P. multocida bound to aluminum hydroxide, which is used as an adjuvant, can hinder the monitoring of the antigen concentration in the vaccine. This study assessed the applicability of a dot immunoassay as an antigen quantification method using monoclonal antibodies. This quantification method was able to detect the antigen with high specificity and sensitivity even when the antigen was bound to the adjuvant, and its application to vaccine products revealed a correlation between the amount of antigen present in the vaccine and the neutralizing antibody titers induced in pigs. The antigen quantification method presented in this study is a simple and sensitive assay capable of quantifying the amount of antigen present in a vaccine that can be used as an alternative quality control measure.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Antigens, Bacterial , Bacterial Vaccines , Pasteurella multocida , Rhinitis, Atrophic , Swine Diseases , Animals , Pasteurella multocida/immunology , Swine , Rhinitis, Atrophic/immunology , Rhinitis, Atrophic/prevention & control , Rhinitis, Atrophic/microbiology , Bacterial Vaccines/immunology , Antigens, Bacterial/immunology , Swine Diseases/prevention & control , Swine Diseases/microbiology , Swine Diseases/immunology , Bordetella bronchiseptica/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Pasteurella Infections/immunology , Antibodies, Neutralizing/immunology
8.
Front Immunol ; 15: 1392456, 2024.
Article in English | MEDLINE | ID: mdl-38779673

ABSTRACT

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Subject(s)
Bacterial Proteins , Animals , Mice , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcus suis/immunology , Streptococcus suis/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Humans , Bacterial Vaccines/immunology
9.
Vet Immunol Immunopathol ; 272: 110757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723459

ABSTRACT

The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.


Subject(s)
Antigens, Bacterial , Granuloma , Mycobacterium bovis , Necrosis , Tuberculosis, Bovine , Animals , Cattle , Granuloma/veterinary , Granuloma/immunology , Granuloma/microbiology , Granuloma/pathology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Necrosis/veterinary , Necrosis/immunology , Necrosis/microbiology , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/pathology , Antigens, Bacterial/immunology , Lymph Nodes/microbiology , Lymph Nodes/immunology , Lymph Nodes/pathology , Caspase 3/immunology , Immunohistochemistry/veterinary
10.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718661

ABSTRACT

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epitopes, B-Lymphocyte , Leprosy , Mycobacterium leprae , Sensitivity and Specificity , Humans , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Leprosy/diagnosis , Leprosy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female , Serologic Tests/methods , Computational Biology/methods , Middle Aged , Young Adult , Adolescent
11.
Vet Immunol Immunopathol ; 272: 110768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703559

ABSTRACT

The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.


Subject(s)
Lipoproteins , Mycoplasma Infections , Mycoplasma hyorhinis , Animals , Lipoproteins/immunology , Mycoplasma hyorhinis/immunology , Mycoplasma Infections/immunology , Mycoplasma Infections/veterinary , Swine/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Pilot Projects , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Swine Diseases/immunology , Swine Diseases/microbiology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Bacterial Proteins/immunology , Longitudinal Studies
12.
J Int Med Res ; 52(5): 3000605241253454, 2024 May.
Article in English | MEDLINE | ID: mdl-38759213

ABSTRACT

OBJECTIVE: To explore the prevalence of type I and type II Helicobacter pylori infection and investigate risk factors in a population from Hainan Province in China. METHODS: Data came from a large, cross-sectional study conducted from August 2022 to April 2023 involving five cities of Hainan. Subjects with confirmed 14C-urea breath test (UBT) and positive serological assay were included. All subjects had a gastroscopy. According to presence or absence of CagA/VacA proteins, subjects were classified as either type I (present) or type II strains (absent). Gastroscopic findings and several socio-demographic factors were examined for correlation with antibody serotyping. RESULTS: In total, 410 subjects were investigated for H. pylori strain types. The overall prevalence of the highly virulent, type I H. pylori strain was 79% (324/410) and type II strain was 21% (86/410). There was a strong association between type I strain and peptic ulcer disease. Of several sociodemographic factors investigated, only smoking and data over baseline (DOB) values showed significant differences between type 1 and type II strains. Logistic regression analysis showed a lower risk of type I H. pylori infection in smokers compared with non-smokers, and a higher risk of H. pylori type I infection in subjects with medium and high data over baseline (DOB) values compared with subjects who had low DOB values. CONCLUSION: Highly virulent, type I H. pylori infections predominate in Hainan and the co-positivity of CagA and VacA antibodies are related to type I H. pylori infection. We found that Type I H. pylori was closely associated with peptic ulcer disease and the DOB values were generally high.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/isolation & purification , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Male , Female , China/epidemiology , Helicobacter Infections/microbiology , Helicobacter Infections/epidemiology , Helicobacter Infections/diagnosis , Middle Aged , Risk Factors , Cross-Sectional Studies , Adult , Bacterial Proteins , Prevalence , Antigens, Bacterial/immunology , Peptic Ulcer/microbiology , Peptic Ulcer/epidemiology , Aged , Breath Tests , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology
13.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741147

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Subject(s)
Antigens, Bacterial , Cell Proliferation , Mycobacterium tuberculosis , T-Lymphocytes , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology
14.
Curr Microbiol ; 81(7): 197, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816607

ABSTRACT

Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.


Subject(s)
Administration, Intranasal , Cytokines , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Mice , Cytokines/metabolism , Tuberculosis/prevention & control , Tuberculosis/immunology , Streptomyces lividans/genetics , Streptomyces lividans/immunology , Aerosols , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/administration & dosage , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/administration & dosage
15.
Int Immunopharmacol ; 134: 112160, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710117

ABSTRACT

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.


Subject(s)
Antibodies, Bacterial , Cholera Vaccines , Cholera , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Vibrio cholerae , Animals , Vibrio cholerae/immunology , Female , Cholera/prevention & control , Cholera/immunology , Cholera Vaccines/immunology , Cholera Vaccines/administration & dosage , Administration, Oral , Mice , Antibodies, Bacterial/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Immunization , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Bacteriophages/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
16.
Front Immunol ; 15: 1378040, 2024.
Article in English | MEDLINE | ID: mdl-38698866

ABSTRACT

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Subject(s)
Antigens, Bacterial , HIV Infections , Interleukin-17 , Latent Tuberculosis , Mycobacterium tuberculosis , Th17 Cells , Adult , Female , Humans , Male , Middle Aged , Antigens, Bacterial/immunology , HIV Infections/immunology , HIV Infections/virology , Immunophenotyping , Interleukin-17/metabolism , Interleukin-17/immunology , Kynurenine/metabolism , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Tryptophan/metabolism
17.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805257

ABSTRACT

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Macrophages , Mycobacterium tuberculosis , Phagosomes , Single-Domain Antibodies , Antigens, Bacterial/metabolism , Antigens, Bacterial/immunology , Bacterial Proteins/metabolism , Phagosomes/metabolism , Hydrogen-Ion Concentration , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Single-Domain Antibodies/metabolism , Humans , Molecular Dynamics Simulation , Animals
18.
PLoS Negl Trop Dis ; 18(4): e0012077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598549

ABSTRACT

BACKGROUND: Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.


Subject(s)
Immunoglobulin M , Sensitivity and Specificity , Humans , Immunoglobulin M/blood , Female , Male , Laos , Adult , Fever/diagnosis , Antibodies, Bacterial/blood , Diagnostic Tests, Routine/methods , Middle Aged , Adolescent , Young Adult , Antibodies, Viral/blood , Antigens, Bacterial/immunology , Antigens, Bacterial/analysis , Immunoassay/methods , Immunoassay/standards
19.
Front Immunol ; 15: 1330796, 2024.
Article in English | MEDLINE | ID: mdl-38665909

ABSTRACT

Introduction: There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods: Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results: A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion: The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.


Subject(s)
Antigens, Bacterial , Cytokines , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/blood , Male , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Latent Tuberculosis/blood , Latent Tuberculosis/microbiology , Female , Mycobacterium tuberculosis/immunology , Philippines , Adult , Cytokines/blood , Middle Aged , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Young Adult , Bacterial Proteins/immunology
20.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38655676

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...