Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68.650
Filter
1.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847494

ABSTRACT

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Subject(s)
Cadherins , Morphogenesis , Zebrafish Proteins , Zebrafish , beta Catenin , Animals , Zebrafish/embryology , Zebrafish/metabolism , beta Catenin/metabolism , Cadherins/metabolism , Cadherins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Adherens Junctions/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/cytology , Antigens, CD
2.
Medicine (Baltimore) ; 103(23): e38244, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847676

ABSTRACT

BACKGROUND: Numerous studies have investigated the association between CDH1 polymorphisms and gastric cancer (GC) risk. However, the results have been inconsistent and controversial. To further determine whether CDH1 polymorphisms increase the risk of GC, we conducted a meta-analysis by pooling the data. METHODS: Relevant case-control studies were collected from PubMed, Embase, Web of Science and Cochrane databases up to January 7, 2024. Subsequently, odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of correlations. A sensitivity analysis was performed to evaluate the robustness and reliability of these included studies. RESULTS: A total of 25 articles including 44 studies, were included in this meta-analysis, including 26 studies on rs16260, 6 studies on rs3743674, 7 studies on rs5030625, and 5 studies on rs1801552. The pooled results showed that rs16260 was remarkably associated with an increased GC risk of GC among Caucasians. Moreover, the rs5030625 variation dramatically enhanced GC predisposition in the Asian population. However, no evident correlations between CDH1 rs3743674 and rs1801552 polymorphisms and GC risk were observed. CONCLUSIONS: Our findings suggested that CDH1 gene polymorphisms were significantly correlated with GC risk, especially in rs16260 and rs5030625 polymorphisms.


Subject(s)
Antigens, CD , Cadherins , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Stomach Neoplasms , Stomach Neoplasms/genetics , Humans , Cadherins/genetics , Antigens, CD/genetics , Asian People/genetics , Case-Control Studies , White People/genetics , Risk Factors
3.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
4.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855867

ABSTRACT

In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.


Subject(s)
ADAM10 Protein , Antigens, CD , Arthritis, Experimental , Arthritis, Rheumatoid , Cadherins , Endothelial Cells , Sphingosine-1-Phosphate Receptors , Animals , Cadherins/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Endothelial Cells/metabolism , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/genetics , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Signal Transduction , Mice, Knockout , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Lysophospholipids/metabolism , Capillary Permeability , Female
5.
Transl Psychiatry ; 14(1): 254, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866753

ABSTRACT

Depression is a prevalent and incapacitating condition with a significant impact on global morbidity and mortality. Although the immune system's role in its pathogenesis is increasingly recognized, there is a lack of comprehensive understanding regarding the involvement of innate and adaptive immune cells. To address this gap, we conducted a multicenter case-control study involving 121 participants matched for sex and age. These participants had either an active (or current) major depressive episode (MDE) (39 cases) or a remitted MDE (40 cases), including individuals with major depressive disorder or bipolar disorder. We compared these 79 patients to 42 healthy controls (HC), analyzing their immunological profiles. In blood samples, we determined the complete cell count and the monocyte subtypes and lymphocyte T-cell populations using flow cytometry. Additionally, we measured a panel of cytokines, chemokines, and neurotrophic factors in the plasma. Compared with HC, people endorsing a current MDE showed monocytosis (p = 0.001), increased high-sensitivity C-reactive protein (p = 0.002), and erythrocyte sedimentation rate (p = 0.003), and an altered proportion of specific monocyte subsets. CD4 lymphocytes presented increased median percentages of activation markers CD69+ (p = 0.007) and exhaustion markers PD1+ (p = 0.013) and LAG3+ (p = 0.014), as well as a higher frequency of CD4+CD25+FOXP3+ regulatory T cells (p = 0.003). Additionally, patients showed increased plasma levels of sTREM2 (p = 0.0089). These changes are more likely state markers, indicating the presence of an ongoing inflammatory response during an active MDE. The Random Forest model achieved remarkable classification accuracies of 83.8% for MDE vs. HC and 70% for differentiating active and remitted MDE. Interestingly, the cluster analysis identified three distinct immunological profiles among MDE patients. Cluster 1 has the highest number of leukocytes, mainly given by the increment in lymphocyte count and the lowest proinflammatory cytokine levels. Cluster 3 displayed the most robust inflammatory pattern, with high levels of TNFα, CX3CL1, IL-12p70, IL-17A, IL-23, and IL-33, associated with the highest level of IL-10, as well as ß-NGF and the lowest level for BDNF. This profile is also associated with the highest absolute number and percentage of circulating monocytes and the lowest absolute number and percentage of circulating lymphocytes, denoting an active inflammatory process. Cluster 2 has some cardinal signs of more acute inflammation, such as elevated levels of CCL2 and increased levels of proinflammatory cytokines such as IL-1ß, IFNγ, and CXCL8. Similarly, the absolute number of monocytes is closer to a HC value, as well as the percentage of lymphocytes, suggesting a possible initiation of the inflammatory process. The study provides new insights into the immune system's role in MDE, paving the ground for replication prospective studies targeting the development of diagnostic and prognostic tools and new therapeutic targets.


Subject(s)
Cytokines , Depressive Disorder, Major , Immunophenotyping , Monocytes , Humans , Female , Male , Case-Control Studies , Depressive Disorder, Major/immunology , Depressive Disorder, Major/blood , Adult , Middle Aged , Cytokines/blood , Cytokines/immunology , Monocytes/immunology , Bipolar Disorder/immunology , Bipolar Disorder/blood , Inflammation/immunology , Inflammation/blood , Antigens, CD/blood , Antigens, CD/immunology , Flow Cytometry
6.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868945

ABSTRACT

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Subject(s)
Biomarkers , Extracellular Vesicles , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Biomarkers/metabolism , Flow Cytometry/methods , Membrane Proteins/metabolism , Membrane Proteins/analysis , Cells, Cultured , Antigens, CD/metabolism
7.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838017

ABSTRACT

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
8.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834654

ABSTRACT

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Coenzyme A Ligases , Ferroptosis , Liver , Receptors, Transferrin , Reperfusion Injury , Up-Regulation , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Animals , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Ferroptosis/genetics , Liver/metabolism , Liver/pathology , Mice , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice, Inbred C57BL , Humans , Liver Transplantation , RNA Stability/genetics , Antigens, CD
9.
Article in Russian | MEDLINE | ID: mdl-38881016

ABSTRACT

BACKGROUND: Contrast enhancement of intracranial aneurysm wall during MRI with targeted visualization of vascular wall correlates with previous aneurysm rupture and, according to some data, may be a predictor of further rupture of unruptured aneurysms. OBJECTIVE: To analyze possible causes of aneurysm contrast enhancement considering morphological data of aneurysm walls. MATERIAL AND METHODS: The study included 44 patients with intracranial aneurysms who underwent preoperative MRI between November 2020 and September 2022. Each aneurysm was assessed regarding contrast enhancement pattern. Microsurgical treatment of aneurysm was accompanied by resection of its wall for subsequent histological and immunohistochemical analysis regarding thrombosis, inflammation and neovascularization. Specimens were subjected to histological and immunochemical analysis. Immunohistochemical analysis was valuable to estimate inflammatory markers CD68 and CD3, as well as neurovascularization marker SD31. RESULTS: Aneurysms with contrast-enhanced walls were characterized by higher number of CD3+, CD68+, CD31+ cells and parietal clots. Intensity of contrast enhancement correlated with aneurysm wall abnormalities. CONCLUSION: Contrast enhancement of aneurysm wall can characterize various morphological abnormalities.


Subject(s)
Intracranial Aneurysm , Magnetic Resonance Imaging , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Intracranial Aneurysm/pathology , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Antigens, Differentiation, Myelomonocytic/analysis , Antigens, Differentiation, Myelomonocytic/metabolism , Adult , Contrast Media , Antigens, CD/analysis , Antigens, CD/metabolism , Aged , Aneurysm, Ruptured/diagnostic imaging , Aneurysm, Ruptured/surgery , Aneurysm, Ruptured/pathology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , CD3 Complex/analysis , CD3 Complex/metabolism , CD68 Molecule
10.
Emerg Microbes Infect ; 13(1): 2366359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38855910

ABSTRACT

Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.


Subject(s)
Coinfection , Granuloma , HIV Infections , Lung , Macrophages , Receptors, Interleukin-6 , STAT3 Transcription Factor , Humans , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV Infections/complications , HIV Infections/immunology , Macrophages/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Granuloma/immunology , Lung/pathology , Lung/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/complications , Female , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , CD68 Molecule
11.
Physiol Rep ; 12(11): e16048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872467

ABSTRACT

Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.


Subject(s)
Endothelial Cells , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Inflammation/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Adult , Galantamine/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Tyrosine/metabolism , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Middle Aged , Intercellular Adhesion Molecule-1/metabolism , Lipids/pharmacology
12.
Clinics (Sao Paulo) ; 79: 100390, 2024.
Article in English | MEDLINE | ID: mdl-38781760

ABSTRACT

Endometriosis's pathophysiology remains incompletely understood, with evidence pointing towards a dysregulated immune response. Regulatory T (Treg) cells, pivotal in maintaining self-tolerance, may facilitate the survival of ectopic endometrial cells within the abdominal cavity, thereby contributing to endometriosis development. This study aimed to assess the prevalence of CD39+CD73+ suppressor Treg cell subsets in the peripheral blood of endometriosis patients. This research focuses on the pivotal role of regulatory T-cells (Tregs), which are essential for maintaining immune tolerance and preventing autoimmune diseases. A case-control study was conducted, including 32 women diagnosed with endometriosis and 22 control subjects. The frequency of peripheral blood CD39+CD73+ suppressor Treg cells was quantified using flow cytometry. No significant differences were observed in the frequency of CD3+CD4+CD25High cells (Median [M]: 10.1; Interquartile Range [IQR]: 6.32‒18.3 vs. M: 9.72; IQR: 6.22-19.8) or CD3+CD4+CD25HighCD39+Foxp3+ cells (M: 31.1; IQR: 19.7-44.0 vs. M: 30.55; IQR: 18.5-45.5) between controls and patients. However, a significantly lower frequency of CD3+CD4+CD25HighCD39+CD73+ cells was observed in the endometriosis group compared to controls (M: 1.98; IQR: 0.0377-3.17 vs. M: 2.25; IQR: 0.50-4.08; p = 0.0483), suggesting a reduction in systemic immune tolerance among these patients. This finding highlights the potential role of CD39 and CD73 expression on Treg cells as biomarkers for assessing disease severity and progression. Furthermore, elucidating the mechanisms driving these alterations may unveil new therapeutic strategies to restore immune equilibrium and mitigate endometriosis symptoms.


Subject(s)
Apyrase , Endometriosis , Flow Cytometry , Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Humans , Female , Endometriosis/immunology , Endometriosis/blood , T-Lymphocytes, Regulatory/immunology , Adult , Case-Control Studies , Forkhead Transcription Factors/blood , Forkhead Transcription Factors/analysis , Apyrase/analysis , 5'-Nucleotidase/blood , Young Adult , Antigens, CD/blood , Antigens, CD/analysis , Statistics, Nonparametric , Reference Values
13.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809232

ABSTRACT

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Subject(s)
Animals, Newborn , Mice, Knockout , N-Acetylneuraminic Acid , STAT1 Transcription Factor , Sialic Acid Binding Ig-like Lectin 1 , Streptococcal Infections , Streptococcus agalactiae , Animals , Mice , Streptococcus agalactiae/immunology , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Immunity, Innate , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Lectins/metabolism , Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
14.
Front Immunol ; 15: 1396719, 2024.
Article in English | MEDLINE | ID: mdl-38799432

ABSTRACT

Background: Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods: We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results: In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions: The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antigens, CD/metabolism , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Macrophages/immunology , Macrophages/metabolism , Prognosis , Adult , CD68 Molecule
15.
Front Immunol ; 15: 1355824, 2024.
Article in English | MEDLINE | ID: mdl-38799447

ABSTRACT

Objectives: IL26 levels are elevated in the blood and synovial fluid of patients with inflammatory arthritis. IL26 can be produced by Th17 cells and locally within joints by tissue-resident cells. IL26 induces osteoblast mineralization in vitro. As osteoproliferation and Th17 cells are important factors in the pathogenesis of axial spondyloarthritis (axSpA), we aimed to clarify the cellular sources of IL26 in spondyloarthritis. Methods: Serum, peripheral blood mononuclear cells (n = 15-35) and synovial tissue (n = 3-9) of adult patients with axSpA, psoriatic arthritis (PsA) and rheumatoid arthritis (RA) and healthy controls (HCs, n = 5) were evaluated by ELISA, flow cytometry including PrimeFlow assay, immunohistochemistry and immunofluorescence and quantitative PCR. Results: Synovial tissue of axSpA patients shows significantly more IL26-positive cells than that of HCs (p < 0.01), but numbers are also elevated in PsA and RA patients. Immunofluorescence shows co-localization of IL26 with CD68, but not with CD3, SMA, CD163, cadherin-11, or CD90. IL26 is elevated in the serum of RA and PsA (but not axSpA) patients compared with HCs (p < 0.001 and p < 0.01). However, peripheral blood CD4+ T cells from axSpA and PsA patients show higher positivity for IL26 in the PrimeFlow assay compared with HCs. CD4+ memory T cells from axSpA patients produce more IL26 under Th17-favoring conditions (IL-1ß and IL-23) than cells from PsA and RA patients or HCs. Conclusion: IL26 production is increased in the synovial tissue of SpA and can be localized to CD68+ macrophage-like synoviocytes, whereas circulating IL26+ Th17 cells are only modestly enriched. Considering the osteoproliferative properties of IL26, this offers new therapeutic options independent of Th17 pathways.


Subject(s)
Antigens, CD , Arthritis, Psoriatic , Interleukins , Synoviocytes , Humans , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Synoviocytes/metabolism , Synoviocytes/immunology , Synoviocytes/pathology , Male , Adult , Female , Antigens, CD/metabolism , Interleukins/metabolism , Interleukins/blood , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Axial Spondyloarthritis/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Joints/pathology , Joints/immunology , Joints/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/pathology
16.
Sci Rep ; 14(1): 12450, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816571

ABSTRACT

The effects of low doses of ionizing radiation on atherosclerosis remain uncertain, particularly as regards the generation of pro- or anti-inflammatory responses, and the time scale at which such effects can occur following irradiation. To explore these phenomena, we exposed atheroprone ApoE(-/-) mice to a single dose of 0, 0.05, 0.5 or 1 Gy of 137Cs (γ) administered at a 10.35 mGy min-1 dose rate and evaluated short-term (1-10 days) and long-term consequences (100 days). Bone marrow-derived macrophages were derived from mice 1 day after exposure. Irradiation was associated with a significant skewing of M0 and M2 polarized macrophages towards the M2 phenotype, as demonstrated by an increased mRNA expression of Retnla, Arg1, and Chil3 in cells from mice exposed to 0.5 or 1 Gy compared with non-irradiated animals. Minimal effects were noted in M1 cells or M1 marker mRNA. Concurrently, we observed a reduced secretion of IL-1ß but enhanced IL-10 release from M0 and M2 macrophages. Effects of irradiation on circulating monocytes were most marked at day 10 post-exposure, when the 1 Gy dose was associated with enhanced numbers of both Ly6CHigh and Ly6Low cells. By day 100, levels of circulating monocytes in irradiated and non-irradiated mice were equivalent, but anti-inflammatory Ly6CLow monocytes were significantly increased in the spleen of mice exposed to 0.05 or 1 Gy. Long term exposures did not affect atherosclerotic plaque size or lipid content, as determined by Oil red O staining, whatever the dose applied. Similarly, irradiation did not affect atherosclerotic plaque collagen or smooth muscle cell content. However, we found that lesion CD68+ cell content tended to decrease with rising doses of radioactivity exposure, culminating in a significant reduction of plaque macrophage content at 1 Gy. Taken together, our results show that short- and long-term exposures to low to moderate doses of ionizing radiation drive an anti-inflammatory response, skewing bone marrow-derived macrophages towards an IL-10-secreting M2 phenotype and decreasing plaque macrophage content. These results suggest a low-grade athero-protective effect of low and moderate doses of ionizing radiation.


Subject(s)
Apolipoproteins E , Cesium Radioisotopes , Gamma Rays , Macrophages , Plaque, Atherosclerotic , Animals , Macrophages/metabolism , Macrophages/radiation effects , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Mice , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice, Knockout , CD68 Molecule
17.
Nat Commun ; 15(1): 4663, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821932

ABSTRACT

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Subject(s)
Lymphocyte Activation Gene 3 Protein , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Binding , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice, Knockout , Male , Mice, Inbred C57BL , Female
18.
BMC Cancer ; 24(1): 664, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822331

ABSTRACT

Recent studies have shown that blue light-emitting diode (LED) light has anti-tumor effects, suggesting the possibility of using visible light in cancer therapy. However, the effects of blue light irradiation on cells in the tumor microenvironment, including tumor-associated macrophages (TAMs), are unknown. Here, THP-1 cells were cultured in the conditioned medium (CM) of HCT-116 cells to prepare TAMs. TAMs were divided into LED-irradiated and control groups. Then, the effects of blue LED irradiation on TAM activation were examined. Expression levels of M2 macrophage markers CD163 and CD206 expression were significantly decreased in LED-irradiated TAMs compared with the control group. While control TAM-CM could induce HCT-116 cell migration, these effects were not observed in cells cultured in TAM-CM with LED irradiation. Vascular endothelial growth factor (VEGF) secretion was significantly suppressed in LED-exposed TAMs. PD-L1 expression was upregulated in HCT-116 cells cultured with TAM-CM but attenuated in cells cultured with LED-irradiated TAM-CM. In an in vivo model, protein expression levels of F4/80 and CD163, which are TAM markers, were reduced in the LED-exposed group. These results indicate that blue LED light may have an inhibitory effect on TAMs, as well as anti-tumor effects on colon cancer cells.


Subject(s)
Colonic Neoplasms , Light , Tumor-Associated Macrophages , Humans , Colonic Neoplasms/radiotherapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/radiation effects , Tumor-Associated Macrophages/immunology , Light/adverse effects , Animals , HCT116 Cells , Mice , Tumor Microenvironment/radiation effects , Cell Movement/radiation effects , Culture Media, Conditioned/pharmacology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Vascular Endothelial Growth Factor A/metabolism , Receptors, Cell Surface/metabolism , Macrophages/metabolism , Macrophages/radiation effects , Macrophages/immunology , Phototherapy/methods , Macrophage Activation/radiation effects , Blue Light
19.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727794

ABSTRACT

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Subject(s)
Ameloblastoma , Cadherins , Chloride Channels , Epithelial-Mesenchymal Transition , Odontogenic Tumors , Vimentin , Humans , Epithelial-Mesenchymal Transition/physiology , Chloride Channels/metabolism , Chloride Channels/analysis , Cadherins/metabolism , Odontogenic Tumors/pathology , Odontogenic Tumors/metabolism , Ameloblastoma/pathology , Ameloblastoma/metabolism , Vimentin/metabolism , Adult , Female , Odontogenic Cysts/pathology , Odontogenic Cysts/metabolism , Male , Actins/metabolism , Young Adult , Middle Aged , Antigens, CD/metabolism , Adolescent
20.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780647

ABSTRACT

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Subject(s)
B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...