Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.869
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Diphtheria Toxin/genetics , Diphtheria Toxin/pharmacology , Promoter Regions, Genetic/genetics , A549 Cells , Cell Movement/genetics , Cell Movement/drug effects , Vimentin/genetics , Vimentin/metabolism , Genes, Transgenic, Suicide , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Gene Expression Regulation, Neoplastic
2.
Front Cell Infect Microbiol ; 14: 1395716, 2024.
Article in English | MEDLINE | ID: mdl-38716195

ABSTRACT

Objective: The relationship between macrophages and the gut microbiota in patients with atherosclerosis remains poorly defined, and effective biological markers are lacking. This study aims to elucidate the interplay between gut microbial communities and macrophages, and to identify biomarkers associated with the destabilization of atherosclerotic plaques. The goal is to enhance our understanding of the underlying molecular pathways and to pave new avenues for diagnostic approaches and therapeutic strategies in the disease. Methods: This study employed Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis on atherosclerosis datasets to identify macrophage-associated genes and quantify the correlation between these genes and gut microbiota gene sets. The Random Forest algorithm was utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related macrophage genes, and a nomogram was constructed. Based on the top five genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to construct gut microbiota-related macrophage clusters and analyze their potential biological alterations. Subsequent single-cell analyses were conducted to observe the expression patterns of the top five genes and the interactions between immune cells. Finally, the expression profiles of key molecules were validated using clinical samples from atherosclerosis patients. Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK, IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes that are upregulated in atherosclerotic plaques. A nomogram based on the expression of these five genes was constructed for use as an auxiliary tool in clinical diagnosis. Single-cell analysis confirmed the specific expression of gut microbiota-associated macrophage genes in macrophages. Clinical samples substantiated the high expression of PLEK in unstable atherosclerotic plaques. Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68, CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic plaques and could serve as diagnostic markers to aid patients with atherosclerosis.


Subject(s)
Algorithms , Atherosclerosis , Biomarkers , Gastrointestinal Microbiome , Machine Learning , Macrophages , Plaque, Atherosclerotic , Receptors, CCR1 , Single-Cell Analysis , Humans , Macrophages/metabolism , Macrophages/microbiology , Plaque, Atherosclerotic/microbiology , Biomarkers/metabolism , Single-Cell Analysis/methods , Receptors, CCR1/metabolism , Receptors, CCR1/genetics , Atherosclerosis/microbiology , Atherosclerosis/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Gene Expression Profiling , Gene Regulatory Networks , CD68 Molecule , Interferon Regulatory Factors
3.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38700903

ABSTRACT

Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.


Subject(s)
Cadherins , Glioma , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/metabolism , Cadherins/genetics , Cell Movement , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Protein Transport , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
4.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
5.
Mol Biol Rep ; 51(1): 652, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734792

ABSTRACT

OBJECTIVE: To compare the mRNA expression of placental iron transporters (TfR-1 and FPN), markers of placental vascularization (VEGF and sFLT1) and marker of structural integrity (LMN-A) in term women with and without iron deficiency anemia. MATERIALS AND METHODS: A total of 30 pregnant women were enrolled; 15 cases of iron deficiency anemia (Hb 7-10.9 gm/dL) and 15 gestational age matched healthy controls (Hb ≥ 11 gm/dL). Peripheral venous blood was collected for assessment of hemoglobin levels and serum iron profile. Placental tissue was used for assessing the mRNA expression of TfR-1, FPN, VEGF, sFLT-1 and LMN-A via real time PCR. RESULTS: Placental expression of TfR-1, VEGF and LMN-A was increased in pregnant women with anemia compared to healthy pregnant controls. Placental expression of sFLT-1 was decreased in pregnant women with anemia compared to healthy pregnant controls. There was no change in the placental expression of FPN. CONCLUSION: The increased expression of TfR-1, VEGF and LMN-A in cases of iron deficiency anemia are most likely to be compensatory in nature to help maintain adequate fetal iron delivery. WHAT DOES THIS STUDY ADDS TO THE CLINICAL WORK: Compensatory changes in the placenta aimed at buffering transport of iron to the fetus are seen in pregnant women with anemia compared to healthy pregnant controls.


Subject(s)
Anemia, Iron-Deficiency , Biomarkers , Cation Transport Proteins , Iron , Placenta , Receptors, Transferrin , Vascular Endothelial Growth Factor A , Humans , Female , Pregnancy , Placenta/metabolism , Adult , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Anemia, Iron-Deficiency/genetics , Anemia, Iron-Deficiency/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Iron/metabolism , Biomarkers/metabolism , Biomarkers/blood , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Case-Control Studies , Antigens, CD/metabolism , Antigens, CD/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression/genetics
6.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38753245

ABSTRACT

Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.


Subject(s)
Antigens, CD , CD83 Antigen , Infant, Premature , Receptors, Antigen, T-Cell, gamma-delta , Humans , Infant, Newborn , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Infant, Premature/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Female , Male , Sepsis/immunology , Cohort Studies , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adult , Lymphocyte Activation/immunology , Neonatal Sepsis/immunology , Infant
7.
Xenotransplantation ; 31(3): e12863, 2024.
Article in English | MEDLINE | ID: mdl-38751087

ABSTRACT

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Subject(s)
Antigens, CD , Endothelial Cells , Macrophages , Transplantation, Heterologous , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Swine , Macrophages/immunology , Macrophages/metabolism , Transplantation, Heterologous/methods , Endothelial Cells/immunology , Phagocytosis , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexin Receptors/immunology , Coculture Techniques
8.
Nat Commun ; 15(1): 4326, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773113

ABSTRACT

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Subject(s)
Dinoprostone , Disease Models, Animal , Lung , Macrophages , Mice, Inbred C57BL , Pneumonia, Pneumococcal , Receptors, Prostaglandin E, EP4 Subtype , Streptococcus pneumoniae , Animals , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/metabolism , Mice , Dinoprostone/metabolism , Streptococcus pneumoniae/immunology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Lung/pathology , Lung/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/genetics , Female , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/immunology
9.
Front Immunol ; 15: 1360412, 2024.
Article in English | MEDLINE | ID: mdl-38745652

ABSTRACT

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Subject(s)
Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
10.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809232

ABSTRACT

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Subject(s)
Animals, Newborn , Mice, Knockout , N-Acetylneuraminic Acid , STAT1 Transcription Factor , Sialic Acid Binding Ig-like Lectin 1 , Streptococcal Infections , Streptococcus agalactiae , Animals , Mice , Streptococcus agalactiae/immunology , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Immunity, Innate , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Lectins/metabolism , Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
11.
PLoS One ; 19(5): e0290485, 2024.
Article in English | MEDLINE | ID: mdl-38722959

ABSTRACT

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Subject(s)
Cadherins , Proteolysis , Ubiquitin-Protein Ligases , Cadherins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Animals , Antigens, CD/metabolism , Antigens, CD/genetics , HEK293 Cells , Adherens Junctions/metabolism , Cell Adhesion
12.
Sci Rep ; 14(1): 12450, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816571

ABSTRACT

The effects of low doses of ionizing radiation on atherosclerosis remain uncertain, particularly as regards the generation of pro- or anti-inflammatory responses, and the time scale at which such effects can occur following irradiation. To explore these phenomena, we exposed atheroprone ApoE(-/-) mice to a single dose of 0, 0.05, 0.5 or 1 Gy of 137Cs (γ) administered at a 10.35 mGy min-1 dose rate and evaluated short-term (1-10 days) and long-term consequences (100 days). Bone marrow-derived macrophages were derived from mice 1 day after exposure. Irradiation was associated with a significant skewing of M0 and M2 polarized macrophages towards the M2 phenotype, as demonstrated by an increased mRNA expression of Retnla, Arg1, and Chil3 in cells from mice exposed to 0.5 or 1 Gy compared with non-irradiated animals. Minimal effects were noted in M1 cells or M1 marker mRNA. Concurrently, we observed a reduced secretion of IL-1ß but enhanced IL-10 release from M0 and M2 macrophages. Effects of irradiation on circulating monocytes were most marked at day 10 post-exposure, when the 1 Gy dose was associated with enhanced numbers of both Ly6CHigh and Ly6Low cells. By day 100, levels of circulating monocytes in irradiated and non-irradiated mice were equivalent, but anti-inflammatory Ly6CLow monocytes were significantly increased in the spleen of mice exposed to 0.05 or 1 Gy. Long term exposures did not affect atherosclerotic plaque size or lipid content, as determined by Oil red O staining, whatever the dose applied. Similarly, irradiation did not affect atherosclerotic plaque collagen or smooth muscle cell content. However, we found that lesion CD68+ cell content tended to decrease with rising doses of radioactivity exposure, culminating in a significant reduction of plaque macrophage content at 1 Gy. Taken together, our results show that short- and long-term exposures to low to moderate doses of ionizing radiation drive an anti-inflammatory response, skewing bone marrow-derived macrophages towards an IL-10-secreting M2 phenotype and decreasing plaque macrophage content. These results suggest a low-grade athero-protective effect of low and moderate doses of ionizing radiation.


Subject(s)
Apolipoproteins E , Cesium Radioisotopes , Gamma Rays , Macrophages , Plaque, Atherosclerotic , Animals , Macrophages/metabolism , Macrophages/radiation effects , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Mice , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice, Knockout , CD68 Molecule
13.
J Med Virol ; 96(5): e29659, 2024 May.
Article in English | MEDLINE | ID: mdl-38747016

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Subject(s)
Antigens, CD , Autophagy-Related Protein 5 , Bone Marrow Stromal Antigen 2 , GPI-Linked Proteins , Hepatitis B virus , Virus Replication , Humans , Antigens, CD/genetics , Antigens, CD/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Gene Knockdown Techniques , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Hep G2 Cells , Hepatitis B/virology , Hepatitis B/genetics , Hepatitis B virus/physiology , Hepatitis B virus/genetics , Host-Pathogen Interactions , Signal Transduction , Bone Marrow Stromal Antigen 2/metabolism
14.
Medicina (Kaunas) ; 60(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38792904

ABSTRACT

Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This study aims to explore the correlation between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes and the likelihood of developing AML in the Saudi population. Material and methods: total of 98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was conducted to evaluate the relationship between the SNPs and AML risk using several genetic models. Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism and increased AML risk. In AML patients, the frequency of the G allele was considerably greater than in healthy controls (OR = 1.93, 95% CI: 1.31-2.81, p = 0.00080). The GG and AG genotypes were associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population. In silico analysis of gene expression profiles from public databases suggested the potential impact of PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML in the Saudi population.


Subject(s)
Antigens, CD , Leukemia, Myeloid, Acute , Lymphocyte Activation Gene 3 Protein , Polymorphism, Single Nucleotide , Programmed Cell Death 1 Receptor , Humans , Leukemia, Myeloid, Acute/genetics , Programmed Cell Death 1 Receptor/genetics , Female , Male , Middle Aged , Adult , Antigens, CD/genetics , Genetic Predisposition to Disease , Case-Control Studies , Saudi Arabia/epidemiology , Aged , Genotype
15.
Cell Commun Signal ; 22(1): 286, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790044

ABSTRACT

BACKGROUND: T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS: We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS: Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS: Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.


Subject(s)
Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Signal Transduction , T-Lymphocytes , Humans , Jurkat Cells , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Ligands , Lymphocyte Activation , Protein Binding , Cell Adhesion
16.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 145-149, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814222

ABSTRACT

The purpose of this study was to investigate the expression of CD109 and its clinicopathological significance in oral squamous cell carcinoma. Data from TIMER2.0 and UALCAN were analyzed to assess CD109 mRNA levels in OSCC. The immunohistochemical method was used to investigate the expressions of CD109 in 20 normal oral mucosa and 75 OSCC and analyzed the relationship between the expression of CD109 and the clinical variables. The mRNA levels of CD109 in OSCC tissues were significantly higher than in adjacent normal tissues (p<0.05). Immunohistochemical analysis revealed that CD109 protein expression was increased in OSCC tissues compared to normal tissues, and this difference was statistically significant (P<0.05). The positive rate of CD109 expression was 94% (16/117) in the group with lymph node metastasis, while it was 55% (32/58) in the group without metastasis (P<0.05). Similarly, the positive rate of CD109 expression was 91% (22/23) in the low differentiation group and 59% (26/52) in the high differentiation group (P<0.05). CD109 expression is markedly higher in OSCC, contributes to the pathological grading of OSCC and predicts lymph node metastasis.


Subject(s)
Antigens, CD , Carcinoma, Squamous Cell , GPI-Linked Proteins , Lymphatic Metastasis , Mouth Neoplasms , Neoplasm Proteins , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Immunohistochemistry , Gene Expression Regulation, Neoplastic , Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adult , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Clinical Relevance
17.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780647

ABSTRACT

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Subject(s)
B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
18.
Pharmacol Res ; 204: 107204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704109

ABSTRACT

We previously demonstrated that the C-E-cad protein encoded by circ-E-cadherin promotes the self-renewal of glioma stem cells. The expression pattern of C-E-cad in breast cancer and its potential function in the tumor microenvironment are unclear. The expression of circ-E-cadherin and C-E-cad was detected in breast cancer specimens. The influence of C-E-cad expression on MDSCs was assessed using FACS and in vivo tumorigenesis experiments. The synergistic effect of anti-C-E-cad and anti-PD-1 antibodies was validated in vivo. circ-E-cadherin and the encoded protein C-E-cad were found to be upregulated in breast cancer vs. normal samples. C-E-cad promotes the recruitment of MDSCs, especially PMN-MDSCs. C-E-cad activates EGFR signaling in tumor cells and promotes the transcription of CXCL8; moreover, C-E-cad binds to MDSCs and maintains glycolysis in PMN-MDSCs. Targeting C-E-cad enhanced anti-PD-1 efficiency. Our data suggested that C-E-cad is markedly overexpressed in breast cancer and promotes MDSC recruitment and survival. Targeting C-E-cad increases the efficacy of immune checkpoint inhibitor therapy.


Subject(s)
Breast Neoplasms , Cadherins , Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Cadherins/metabolism , Cadherins/genetics , Animals , Tumor Microenvironment/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , Mice , ErbB Receptors/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
19.
Nat Commun ; 15(1): 4663, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821932

ABSTRACT

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Subject(s)
Lymphocyte Activation Gene 3 Protein , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Binding , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice, Knockout , Male , Mice, Inbred C57BL , Female
20.
Sci Rep ; 14(1): 9276, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653742

ABSTRACT

Tumor-associated macrophages (TAMs) are a specific subset of macrophages that reside inside the tumor microenvironment. The dynamic interplay between TAMs and tumor cells plays a crucial role in the treatment response and prognosis of lung adenocarcinoma (LUAD). The study aimed to examine the association between TAMs and LUAD to advance the development of targeted strategies and immunotherapeutic approaches for treating this type of lung cancer. The study employed single-cell mRNA sequencing data to characterize the immune cell composition of LUAD and delineate distinct subpopulations of TAMs. The "BayesPrism" and "Seurat" R packages were employed to examine the association between these subgroups and immunotherapy and clinical features to identify novel immunotherapy biomarkers. Furthermore, a predictive signature was generated to forecast patient prognosis by examining the gene expression profile of immunotherapy-associated TAMs subsets and using 104 machine-learning techniques. A comprehensive investigation has shown the existence of a hitherto unidentified subgroup of TAMs known as RGS1 + TAMs, which has been found to have a strong correlation with the efficacy of immunotherapy and the occurrence of tumor metastasis in LUAD patients. CD83 was identified CD83 as a distinct biomarker for the expression of RGS1 + TAMs, showcasing its potential utility as an indicator for immunotherapeutic interventions. Furthermore, the prognostic capacity of the RTMscore signature, encompassing three specific mRNA (NR4A2, MMP14, and NPC2), demonstrated enhanced robustness when contrasted against the comprehensive collection of 104 features outlined in the published study. CD83 has potential as an immunotherapeutic biomarker. Meanwhile, The RTMscore signature established in the present study might be beneficial for survival prognostication.


Subject(s)
Adenocarcinoma of Lung , Immunotherapy , Lung Neoplasms , Tumor-Associated Macrophages , Humans , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Immunotherapy/methods , Prognosis , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Tumor Microenvironment/immunology , Biomarkers, Tumor , Male , Female , Gene Expression Regulation, Neoplastic , Antigens, CD/metabolism , Antigens, CD/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...