Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.677
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 552-556, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825899

ABSTRACT

Objective: To investigate the diagnostic value of preferentially expressed antigen in melanoma (PRAME) immunohistochemical staining in differential diagnosis of primary endometrial and endocervical adenocarcinomas. Methods: Eighty-seven cases of endometrial adenocarcinoma and sixty-three cases of cervical adenocarcinoma were collected from May 2018 to November 2023 in the Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School and all the cases were subject to PRAME immunohistochemical staining. The difference of PRAME expression between endometrial and endocervical adenocarcinomas was analyzed. Results: In 87 cases of endometrial adenocarcinoma, patients' age ranged from 35 to 71 years (average 59 years, median 59 years); in 63 cases of cervical adenocarcinoma patients' age ranged from 28 to 80 years (average 49 years, median 47 years). Seventy-eight cases (78/87, 89.7%) of endometrial adenocarcinoma; 2 cases (2/63, 3.2%) of cervical adenocarcinoma showed positive PRAME staining, and both cases of cervical adenocarcinoma were clear cell carcinoma. The sensitivity and specificity of PRAME in distinguishing between endometrial and cervical adenocarcinoma in the cohort were 89.7% and 96.8%, while those in differentiating non-clear cell carcinoma of the uterus from that of the cervix reached up to 91% and 100%, respectively. Conclusions: Immunohistochemical staining for PRAME demonstrates statistically significant differences between endometrial and cervical carcinomas, making it a useful auxiliary diagnostic marker for differentiating cervical and endometrial adenocarcinoma, especially non-clear cell carcinoma.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Endometrial Neoplasms , Immunohistochemistry , Sensitivity and Specificity , Uterine Cervical Neoplasms , Humans , Female , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Middle Aged , Diagnosis, Differential , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Adult , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Biomarkers, Tumor/metabolism , Antigens, Neoplasm/metabolism , Aged, 80 and over
2.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38828721

ABSTRACT

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Subject(s)
Macrophages , Phagocytosis , Receptors, Immunologic , Humans , Animals , Mice , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , CD47 Antigen/immunology , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
3.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832948

ABSTRACT

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Mutation , Neoplasms , Receptors, Antigen, T-Cell , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cell Line, Tumor
4.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720322

ABSTRACT

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Subject(s)
Cancer Vaccines , Lymph Nodes , Manganese Compounds , Mice, Inbred C57BL , Nanoparticles , Ovalbumin , Oxides , Animals , Cancer Vaccines/immunology , Lymph Nodes/immunology , Mice , Ovalbumin/immunology , Ovalbumin/chemistry , Oxides/chemistry , Nanoparticles/chemistry , Manganese Compounds/chemistry , Immunity, Cellular , Female , Cell Line, Tumor , DNA/chemistry , DNA/immunology , Immunotherapy/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Particle Size , Antigens, Neoplasm/immunology
5.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38754917

ABSTRACT

BACKGROUND: Cancer neoantigens arise from protein-altering somatic mutations in tumor and rank among the most promising next-generation immuno-oncology agents when used in combination with immune checkpoint inhibitors. We previously developed a computational framework, REAL-neo, for identification, quality control, and prioritization of both class-I and class-II human leucocyte antigen (HLA)-presented neoantigens resulting from somatic single-nucleotide mutations, small insertions and deletions, and gene fusions. In this study, we developed a new module, SPLICE-neo, to identify neoantigens from aberrant RNA transcripts from two distinct sources: (1) DNA mutations within splice sites and (2) de novo RNA aberrant splicings. METHODS: First, SPLICE-neo was used to profile all DNA splice-site mutations in 11,892 tumors from The Cancer Genome Atlas (TCGA) and identified 11 profiles of splicing donor or acceptor site gains or losses. Transcript isoforms resulting from the top seven most frequent profiles were computed using novel logic models. Second, SPLICE-neo identified de novo RNA splicing events using RNA sequencing reads mapped to novel exon junctions from either single, double, or multiple exon-skipping events. The aberrant transcripts from both sources were then ranked based on isoform expression levels and z-scores assuming that individual aberrant splicing events are rare. Finally, top-ranked novel isoforms were translated into protein, and the resulting neoepitopes were evaluated for neoantigen potential using REAL-neo. The top splicing neoantigen candidates binding to HLA-A*02:01 were validated using in vitro T2 binding assays. RESULTS: We identified abundant splicing neoantigens in four representative TCGA cancers: BRCA, LUAD, LUSC, and LIHC. In addition to their substantial contribution to neoantigen load, several splicing neoantigens were potent tumor antigens with stronger bindings to HLA compared with the positive control of antigens from influenza virus. CONCLUSIONS: SPLICE-neo is the first tool to comprehensively identify and prioritize splicing neoantigens from both DNA splice-site mutations and de novo RNA aberrant splicings. There are two major advances of SPLICE-neo. First, we developed novel logic models that assemble and prioritize full-length aberrant transcripts from DNA splice-site mutations. Second, SPLICE-neo can identify exon-skipping events involving more than two exons, which account for a quarter to one-third of all skipping events.


Subject(s)
Antigens, Neoplasm , Neoplasms , RNA Splicing , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/genetics
6.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728394

ABSTRACT

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , HLA-E Antigens , Histocompatibility Antigens Class I , Macaca mulatta , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Antigens, Neoplasm/immunology , Humans , Cancer Vaccines/immunology , Antigen Presentation/immunology , Cell Line, Tumor , Male , Cytomegalovirus/immunology , Mesothelin , Acid Phosphatase
7.
Sci Rep ; 14(1): 11254, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755218

ABSTRACT

Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Liposarcoma , Humans , Liposarcoma/immunology , Liposarcoma/genetics , Liposarcoma/therapy , Liposarcoma/pathology , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Male , Female , Middle Aged , Aged , Tumor Microenvironment/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Adult
8.
Cancer Immunol Immunother ; 73(7): 129, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744688

ABSTRACT

Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Lung Neoplasms , Vaccines, Subunit , Animals , Antigens, Neoplasm/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Mice , Cancer Vaccines/immunology , Vaccines, Subunit/immunology , Humans , Mice, Inbred C57BL , Female , Immunotherapy/methods , Cell Line, Tumor , Protein Subunit Vaccines
9.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1365-1379, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783803

ABSTRACT

Globally, colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related fatalities. According to the World Health Organization, there are over 1.9 million annual cases of CRC diagnosed worldwide, resulting in more than 900 000 deaths. In recent years, chimeric antigen receptor T (CAR-T) cell therapy has shown clinical success in treating certain hematological malignancies and is now being explored for its potential in targeting solid tumors like CRC. Currently, CAR-T cell therapies targeting carcinoembryonic antigen (CEA), natural killer group 2, member D ligand (NKG2DL), and other markers have achieved remarkable results in clinical trials, albeit encountering significant challenges. This review summarizes the promising targets of CAR-T cell therapy for CRC and highlights progress made in clinical trials and preclinical studies. Additionally, the review discusses the challenges faced by CAR-T cell therapy in CRC treatment, including a shortage of tumor-specific antigens, cytokine release syndrome, adverse tumor microenvironment, and limited infiltration of CAR-T cells. In summary, this review provides an overview of the latest research progress and challenges in CAR-T cell therapy for CRC, aiming to contribute fresh insights for the clinical treatment of this disease.


Subject(s)
Colorectal Neoplasms , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Carcinoembryonic Antigen/immunology , Tumor Microenvironment , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Animals
10.
Sci Immunol ; 9(95): eade2094, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787961

ABSTRACT

Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.


Subject(s)
CD8-Positive T-Lymphocytes , Signal Transduction , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Signal Transduction/immunology , Mice, Inbred C57BL , Mice, Transgenic , Antigens, Neoplasm/immunology , Neoplasms/immunology
11.
Front Immunol ; 15: 1387516, 2024.
Article in English | MEDLINE | ID: mdl-38784377

ABSTRACT

Background: It has been well documented that Takayasu arteritis (TAK) and ulcerative colitis (UC) coexist in the same patients. HLA-B*52 characterizes the co-occurrence, which is one of the common genetic features between these two diseases, indicating shared underlying pathologic mechanisms. Anti-integrin αvß6 antibody (Ab) is present in sera of UC patients in a highly specific manner. We investigated if there were any associations between anti-integrin αvß6 Ab and TAK, considering the risk HLA alleles. Methods: A total of 227 Japanese TAK patients were recruited in the current study and their serum samples were subjected to measurement of anti-integrin αvß6 Ab by ELISA. The clinical information, including the co-occurrence of UC, was collected. The HLA allele carrier status was determined by Luminex or genotype imputation. Results: The information about the presence of UC was available for 165 patients, among which eight (4.84%) patients had UC. Anti-integrin αvß6 antibody was identified in 7 out of 8 TAK subjects with UC (87.5%) while only 5 out of 157 (3.18%) TAK subjects without UC had the antibody (OR 121, p=7.46×10-8). A total of 99 out of 218 (45.4%) patients were HLA-B*52 carriers. There was no significant association between the presence of anti-integrin αvß6 Ab and HLA-B*52 carrier status in those without UC (OR 2.01, 95% CI 0.33-12.4, p = 0.189). Conclusions: The prevalence of anti-integrin αvß6 Ab was high in TAK patients with UC, but not in the absence of concomitant UC. The effect of HLA-B*52 on anti-integrin αvß6 Ab production would be minimal.


Subject(s)
Antigens, Neoplasm , Colitis, Ulcerative , Integrins , Takayasu Arteritis , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/genetics , Takayasu Arteritis/immunology , Takayasu Arteritis/genetics , Female , Integrins/immunology , Male , Adult , Middle Aged , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , HLA-B52 Antigen/immunology , HLA-B52 Antigen/genetics , Alleles , Young Adult , Japan/epidemiology , Genotype , Autoantibodies/blood , Autoantibodies/immunology
12.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766857

ABSTRACT

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Subject(s)
Adipocytes , Antigens, Neoplasm , Breast Neoplasms , Carbonic Anhydrase IX , Cell Movement , Colonic Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Leptin , Paracrine Communication , Humans , Carbonic Anhydrase IX/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Antigens, Neoplasm/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leptin/metabolism , Cell Line, Tumor , Animals , Obesity/metabolism , Culture Media, Conditioned/pharmacology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Mice
13.
Ther Adv Respir Dis ; 18: 17534666241249168, 2024.
Article in English | MEDLINE | ID: mdl-38757628

ABSTRACT

BACKGROUND: Invasive lung adenocarcinoma with MPP/SOL components has a poor prognosis and often shows a tendency to recurrence and metastasis. This poor prognosis may require adjustment of treatment strategies. Preoperative identification is essential for decision-making for subsequent treatment. OBJECTIVE: This study aimed to preoperatively predict the probability of MPP/SOL components in lung adenocarcinomas by a comprehensive model that includes radiomics features, clinical characteristics, and serum tumor biomarkers. DESIGN: A retrospective case control, diagnostic accuracy study. METHODS: This study retrospectively recruited 273 patients (males: females, 130: 143; mean age ± standard deviation, 63.29 ± 10.03 years; range 21-83 years) who underwent resection of invasive lung adenocarcinoma. Sixty-one patients (22.3%) were diagnosed with lung adenocarcinoma with MPP/SOL components. Radiomic features were extracted from CT before surgery. Clinical, radiomic, and combined models were developed using the logistic regression algorithm. The clinical and radiomic signatures were integrated into a nomogram. The diagnostic performance of the models was evaluated using the area under the curve (AUC). Studies were scored according to the Radiomics Quality Score and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines. RESULTS: The radiomics model achieved the best AUC values of 0.858 and 0.822 in the training and test cohort, respectively. Tumor size (T_size), solid tumor size (ST_size), consolidation-to-tumor ratio (CTR), years of smoking, CYFRA 21-1, and squamous cell carcinoma antigen were used to construct the clinical model. The clinical model achieved AUC values of 0.741 and 0.705 in the training and test cohort, respectively. The nomogram showed higher AUCs of 0.894 and 0.843 in the training and test cohort, respectively. CONCLUSION: This study has developed and validated a combined nomogram, a visual tool that integrates CT radiomics features with clinical indicators and serum tumor biomarkers. This innovative model facilitates the differentiation of micropapillary or solid components within lung adenocarcinoma and achieves a higher AUC, indicating superior predictive accuracy.


A new tool to predict aggressive lung cancer types before surgeryWe developed a tool to help doctors determine whether lung cancer is one of the more dangerous types, called micropapillary (MPP) or solid (SOL) patterns, before surgery. These patterns can be more harmful and spread quickly, so knowing they are there can help doctors plan the best treatment. We looked at the cases of 273 lung cancer patients who had surgery and found that 61 of them had these aggressive cancer types. To predict these patterns, we used a computer process known as logistic regression, analyzing CT scan details, health information, and blood tests for cancer markers. Based on CT scans, our tool was very good at predicting whether these patterns were present in two patient groups. However, predictions using only basic health information like the size of the tumor and whether the patient smoked needed to be more accurate. We found a way to make our predictions even better. Combining all information into one chart, known as a nomogram, significantly improved our ability to predict these dangerous cancer patterns. This combined chart could be a big help for doctors. It gives them a clearer picture of the cancer's aggressiveness before surgery, which can guide them to choose the best treatment options. This approach aims to offer a better understanding of the tumor, leading to more tailored and effective treatments for patients facing lung cancer.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Nomograms , Predictive Value of Tests , Humans , Female , Middle Aged , Male , Retrospective Studies , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/blood , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/diagnosis , Adult , Biomarkers, Tumor/blood , Aged, 80 and over , Young Adult , Tomography, X-Ray Computed , Keratin-19/blood , Adenocarcinoma, Papillary/blood , Adenocarcinoma, Papillary/pathology , Adenocarcinoma, Papillary/diagnostic imaging , Adenocarcinoma, Papillary/diagnosis , Neoplasm Invasiveness , Radiomics , Antigens, Neoplasm
14.
Glycobiology ; 34(6)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38760939

ABSTRACT

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Subject(s)
Enzyme Inhibitors , Fibroblasts , Glycosaminoglycans , Mucopolysaccharidosis I , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis I/pathology , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Glycosaminoglycans/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/genetics , Molecular Docking Simulation , Antigens, Neoplasm , DNA-Binding Proteins , Neoplasm Proteins
15.
Clin Rheumatol ; 43(6): 1855-1863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704780

ABSTRACT

INTRODUCTION: Rheumatoid arthritis (RA) often leads to interstitial lung disease (ILD), significantly affecting patient outcomes. This study explored the diagnostic accuracy of a multi-biomarker approach to offer a more efficient and accessible diagnostic strategy for RA-associated ILD (RA-ILD). METHODS: Patients diagnosed with RA, with or without ILD, at Beijing Tiantan Hospital from October 2019 to October 2023 were analyzed. A total of 125 RA patients were included, with 76 diagnosed with RA-ILD. The study focused on three categories of indicators: tumor markers, inflammatory indicators, and disease activity measures. The heatmap correlation analysis was employed to analyze the correlation among these indicators. Logistic regression was used to determine odds ratios (OR) for indicators linked to RA-ILD risk. Receiver-operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic potential of these indicators for RA-ILD. RESULTS: The results of logistic regression analysis showed that tumor markers (carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and cytokeratin 19 fragment (CYFRA21-1)), as well as inflammatory indicators (neutrophil, neutrophil-to-lymphocyte ratio (NLR), platelet, C-reactive protein (CRP)) and disease activity measures (disease activity score-28-CRP (DAS28-CRP), rheumatoid factor (RF), and anti-cyclic peptide containing citrulline (anti-CCP)), were significantly associated with RA-ILD. The correlation coefficients among these indicators were relatively low. Notably, the combination indicator 4, which integrated the aforementioned three categories of biomarkers, demonstrated improved diagnostic accuracy with an AUC of 0.857. CONCLUSION: The study demonstrated that combining tumor markers, inflammatory indicators, and disease activity measures significantly enhanced the prediction of RA-ILD. Key Points • Multidimensional strategy: Integrated tumor markers, inflammatory indicators, and disease activity measures to enhance early detection of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). • Diagnostic accuracy: Employed heatmap correlation and logistic regression, identifying significant associations and improving diagnostic accuracy with a multidimensional biomarker combination. • Superior performance: The combined multidimensional biomarker strategy demonstrated higher diagnostic precision compared to individual or dual-category indicators. • Clinical relevance: Offers a promising, accessible approach for early detection of RA-ILD in clinical settings, potentially improving patient outcomes.


Subject(s)
Arthritis, Rheumatoid , Biomarkers, Tumor , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Female , Male , Middle Aged , Biomarkers, Tumor/blood , Aged , Biomarkers/blood , ROC Curve , Logistic Models , Keratin-19/blood , Adult , C-Reactive Protein/analysis , Severity of Illness Index , CA-19-9 Antigen/blood , Antigens, Neoplasm
16.
Ups J Med Sci ; 1292024.
Article in English | MEDLINE | ID: mdl-38716077

ABSTRACT

Dendritic cells (DCs) possess a specialized function in presenting antigens and play pivotal roles in both innate and adaptive immune responses. Their ability to cross-present antigens from tumor cells to naïve T cells is instrumental in generating specific T-cell-mediated antitumor responses, crucial for controlling tumor growth and preventing tumor cell dissemination. However, within a tumor immune microenvironment (TIME), the functions of DCs can be significantly compromised. This review focuses on the profile, function, and activation of DCs, leveraging recent studies that reveal insights into their phenotype acquisition, transcriptional state, and functional programs through single-cell RNA sequence (scRNA-seq) analysis. Additionally, the therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is discussed.


Subject(s)
Dendritic Cells , Immunotherapy , Neoplasms , Tumor Microenvironment , Dendritic Cells/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Tumor Microenvironment/immunology , Antigens, Neoplasm/immunology , Animals
17.
Front Immunol ; 15: 1384039, 2024.
Article in English | MEDLINE | ID: mdl-38726000

ABSTRACT

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Subject(s)
Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Tumor Microenvironment/immunology , Clinical Trials as Topic , Antigens, Neoplasm/immunology
18.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727261

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Tumor Microenvironment/immunology , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Animals
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732150

ABSTRACT

Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Neoplasms , Peptides , Humans , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/prevention & control , Peptides/immunology , Peptides/chemistry , Vaccines, Subunit/immunology , Animals , Clinical Trials as Topic
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38770719

ABSTRACT

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Subject(s)
Algorithms , Cancer Vaccines , Monte Carlo Method , Humans , Cancer Vaccines/immunology , Cancer Vaccines/genetics , HLA Antigens/immunology , HLA Antigens/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...