Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.049
Filter
1.
Virol J ; 21(1): 125, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831469

ABSTRACT

BACKGROUND: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.


Subject(s)
Antigens, Viral, Tumor , Cell Nucleus , Merkel cell polyomavirus , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/physiology , Humans , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Cell Nucleus/virology , Cell Nucleus/metabolism , Animals , Rats , Nuclear Localization Signals , Carcinoma, Merkel Cell/virology , Cell Line , Skin Neoplasms/virology , Skin Neoplasms/pathology , Cell Transformation, Viral , Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Polyomavirus Infections/virology
2.
BMC Vet Res ; 20(1): 198, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745180

ABSTRACT

BACKGROUND: Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS: In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS: Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.


Subject(s)
Fibroblasts , Animals , Fibroblasts/virology , Sheep , Mice , Orf virus/genetics , Mice, Nude , Cell Proliferation , Simian virus 40 , Cell Line , Apoptosis , Antigens, Viral, Tumor/genetics
3.
Cells ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667318

ABSTRACT

Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-ß-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.


Subject(s)
Antigens, Polyomavirus Transforming , Cell Differentiation , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Swine , Antigens, Polyomavirus Transforming/metabolism , Antigens, Polyomavirus Transforming/genetics , Cell Proliferation , Muscle Development , Antigens, Viral, Tumor/metabolism , Antigens, Viral, Tumor/genetics , Simian virus 40/genetics
4.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674125

ABSTRACT

Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.


Subject(s)
DNA Replication , Polyomavirus , Proteomics , Virus Replication , Phosphorylation , Humans , Proteomics/methods , Polyomavirus/metabolism , Polyomavirus/genetics , Tandem Mass Spectrometry , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Chromatography, Liquid , Antigens, Viral, Tumor/metabolism , Antigens, Viral, Tumor/genetics , Protein Processing, Post-Translational , DNA, Viral/metabolism , DNA, Viral/genetics
5.
Microbiol Immunol ; 68(5): 179-184, 2024 May.
Article in English | MEDLINE | ID: mdl-38433377

ABSTRACT

BK polyomavirus (BKPyV) was the first human polyomavirus to be isolated from an immunosuppressed kidney transplant recipient in 1971. BKPyV reactivation causes BKPyV-associated nephropathy and hemorrhagic cystitis. However, the mechanisms underlying BKPyV replication remain unclear. In the present study, we performed the long-term cultivation of COS-7 cells transfected with archetype KOM-5 DNA, which were designated as COS-BK cells. BKPyV derived from COS-BK cells was characterized by analyzing the amount of the virus based on hemagglutination, viral replication, and the production of viral protein 1 (VP1). Immunostaining showed that VP1-positive cells accounted for a small percentage of COS-BK cells. The nucleotide sequences encompassing the origin of the DNA replication of BKPyV derived from COS-BK cells were generated from KOM-5 by the deletion of an 8-bp sequence, which did not involve T antigen binding sites. BKPyV replicated most efficiently in COS-BK cells in DMEM containing 2% fetal bovine serum. These results indicate that COS-BK cells are a suitable culture system for studying the persistent infection of archetype BKPyV.


Subject(s)
BK Virus , Polyomavirus Infections , Virus Replication , BK Virus/physiology , BK Virus/genetics , Animals , Chlorocebus aethiops , COS Cells , Polyomavirus Infections/virology , Humans , Capsid Proteins/genetics , DNA, Viral/genetics , Persistent Infection/virology , Antigens, Viral, Tumor/genetics , Tumor Virus Infections/virology
6.
Br J Dermatol ; 190(6): 876-884, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38261397

ABSTRACT

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive malignant neuroendocrine tumour. There are two subsets of MCC, one related to Merkel cell polyomavirus (MCPyV) and the other to ultraviolet radiation (UVR). MCPyV-positive and MCPyV-negative MCCs have been considered to be different tumours, as the former harbour few DNA mutations and are not related to UVR, and the latter usually arise in sun-exposed areas and may be found in conjunction with other keratinocytic tumours, mostly squamous cell carcinomas. Two viral oncoproteins, large T antigen (LT; coded by MCPyV_gp3) and small T antigen (sT; coded by MCPyV_gp4), promote different carcinogenic pathways. OBJECTIVES: To determine which genes are differentially expressed in MCPyV-positive and MCPyV-negative MCC; to describe the mutational burden and the most frequently mutated genes in both MCC subtypes; and to identify the clinical and molecular factors that may be related to patient survival. METHODS: Ninety-two patients with a diagnosis of MCC were identified from the medical databases of participating centres. To study gene expression, a customized panel of 172 genes was developed. Gene expression profiling was performed with nCounter technology. For mutational studies, a customized panel of 26 genes was designed. Somatic single nucleotide variants (SNVs) were identified following the GATK Best Practices workflow for somatic mutations. RESULTS: The expression of LT enabled the series to be divided into two groups (LT positive, n = 55; LT negative, n = 37). Genes differentially expressed in LT-negative patients were related to epithelial differentiation, especially SOX9, or proliferation and the cell cycle (MYC, CDK6), among others. Congruently, LT displayed lower expression in SOX9-positive patients, and differentially expressed genes in SOX9-positive patients were related to epithelial/squamous differentiation. In LT-positive patients, the mean SNV frequency was 4.3; in LT-negative patients it was 10 (P = 0.03). On multivariate survival analysis, the expression of SNAI1 [hazard ratio (HR) 1.046, 95% confidence interval (CI) 1.007-1.086; P = 0.02] and CDK6 (HR 1.049, 95% CI 1.020-1.080; P = 0.001) were identified as risk factors. CONCLUSIONS: Tumours with weak LT expression tend to co-express genes related to squamous differentiation and the cell cycle, and to have a higher mutational burden. These findings are congruent with those of earlier studies.


Merkel cell carcinoma (MCC) is an aggressive form of skin tumour. There are two subtypes of MCC: one of them is related to a virus called Merkel cell polyomavirus (MCPyV); the other one is related to persistent exposure to sunlight. The aim of this research was to find differences between these subtypes in their molecular behaviour (the genes that are expressed and the mutations that may be found). To do this, we carried out two studies, one to investigate gene expression (the process cells use to convert the instructions in our DNA into a functional product such as a protein) and one to look at gene mutations (changes in the DNA sequence). We found that the tumours that were not related to MCPyV expressed genes related to epithelial differentiation (the process by which unspecialized cells gain features characteristics of epithelial cells, which, among other things, make up the outer surface of the body), which means that the origin of both MCC subtypes may be different. We also found that MCPyV-related tumours had fewer mutations. Our findings are important because they help us to understand the biology of the MCC subtypes and could help with the development of new treatments for people diagnosed with skin tumours.


Subject(s)
Antigens, Viral, Tumor , Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , SOX9 Transcription Factor , Skin Neoplasms , Tumor Virus Infections , Humans , Carcinoma, Merkel Cell/virology , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/isolation & purification , Skin Neoplasms/virology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Male , Aged , Female , Polyomavirus Infections/genetics , Polyomavirus Infections/virology , Tumor Virus Infections/genetics , Tumor Virus Infections/virology , SOX9 Transcription Factor/genetics , Antigens, Viral, Tumor/genetics , Aged, 80 and over , Middle Aged , Mutation , Gene Expression Regulation, Neoplastic , Gene Expression Profiling
7.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38079542

ABSTRACT

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Mice , Animals , Humans , Antigens, Polyomavirus Transforming/metabolism , Merkel cell polyomavirus/metabolism , NF-kappa B/metabolism , src-Family Kinases/metabolism , Phospholipase C gamma/metabolism , Signal Transduction , Antigens, Viral, Tumor/genetics , Carcinoma, Merkel Cell/genetics , Tyrosine/metabolism
8.
Front Immunol ; 14: 1253568, 2023.
Article in English | MEDLINE | ID: mdl-37711623

ABSTRACT

Introduction: Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods: We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results: Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions: These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).


Subject(s)
Cancer Vaccines , Carcinoma, Merkel Cell , Merkel cell polyomavirus , Skin Neoplasms , Humans , Antigens, Viral, Tumor/genetics , CD4-Positive T-Lymphocytes , Lysosomal-Associated Membrane Protein 1 , Skin Neoplasms/therapy , Tumor Microenvironment , Lysosomal Membrane Proteins
9.
Biotechnol Bioeng ; 120(7): 1953-1960, 2023 07.
Article in English | MEDLINE | ID: mdl-37232541

ABSTRACT

Viral vectors for gene therapy, such as recombinant adeno-associated viruses, are produced in human embryonic kidney (HEK) 293 cells. However, the presence of the SV40 T-antigen-encoding CDS SV40GP6 and SV40GP7 in the HEK293T genome raises safety issues when these cells are used in manufacturing for clinical purposes. We developed a new T-antigen-negative HEK cell line from ExcellGene's proprietary HEKExpress,® using the CRISPR-Cas9 strategy. We obtained a high number of clonally-derived cell populations and all of them were demonstrated T-antigen negative. Stability study and AAV production evaluation showed that the deletion of the T-antigen-encoding locus did not impact neither cell growth nor viability nor productivity. The resulting CMC-compliant cell line, named HEKzeroT,® is able to produce high AAV titers, from small to large scale.


Subject(s)
Antigens, Viral, Tumor , Genetic Vectors , Humans , HEK293 Cells , Antigens, Viral, Tumor/genetics , Dependovirus/genetics
10.
Transgenic Res ; 32(4): 305-319, 2023 08.
Article in English | MEDLINE | ID: mdl-37247123

ABSTRACT

JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.


Subject(s)
Polyomavirus , Stomach Neoplasms , Mice , Humans , Animals , Antigens, Viral, Tumor/genetics , Mice, Transgenic , Epithelial Cells/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
11.
Hum Gene Ther ; 34(15-16): 697-704, 2023 08.
Article in English | MEDLINE | ID: mdl-37171121

ABSTRACT

Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.


Subject(s)
Herpesvirus 1, Human , Mice , Animals , Humans , HEK293 Cells , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Genetic Vectors/genetics , DNA
12.
J Invest Dermatol ; 143(10): 1937-1946.e7, 2023 10.
Article in English | MEDLINE | ID: mdl-37037414

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/pathology , Histones/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Skin Neoplasms/pathology , Merkel cell polyomavirus/genetics , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism
13.
J Neurovirol ; 29(2): 232-236, 2023 04.
Article in English | MEDLINE | ID: mdl-37097595

ABSTRACT

Due to its peculiar histopathological findings, pleomorphic xanthoastrocytoma (PXA), a rare cerebral tumor of young adults with a slow growth and a good prognosis, resembles to the lytic phase of progressive multifocal leukoencephalopathy, a fatal neurodegenerative disease caused by JC polyomavirus (JCPyV). Therefore, the presence of JCPyV DNA was examined in an 11-year-old child with xanthoastrocytoma, WHO grade 3, by quantitative PCR (qPCR) and nested PCR (nPCR) using primers amplifying sequences encoding the N- and C-terminal region of large T antigen (LTAg), the non-coding control region (NCCR), and viral protein 1 (VP1) DNA. The expression of transcripts from LTAg and VP1 genes was also evaluated. In addition, viral microRNAs' (miRNAs) expression was investigated. Cellular p53 was also searched at both DNA and RNA level. qPCR revealed the presence of JCPyV DNA with a mean value of 6.0 × 104 gEq/mL. nPCR gave a positive result for the 5' region of the LTAg gene and the NCCR, whereas 3' end LTAg and VP1 DNA sequences were not amplifiable. Only LTAg transcripts of 5' end were found whereas VP1 gene transcript was undetectable. Although in most cases, either Mad-1 or Mad-4 NCCRs have been identified in association with JCPyV-positive human brain neoplasms, the archetype NCCR structure was observed in the patient's sample. Neither viral miRNA miR-J1-5p nor p53 DNA and RNA were detected. Although the expression of LTAg supports the possible role of JCPyV in PXA, further studies are warranted to better understand whether the genesis of xanthoastrocytoma could depend on the transformation capacity of LTAg by Rb sequestration.


Subject(s)
JC Virus , Leukoencephalopathy, Progressive Multifocal , MicroRNAs , Neurodegenerative Diseases , Young Adult , Humans , Child , Base Sequence , Neurodegenerative Diseases/genetics , Tumor Suppressor Protein p53/genetics , JC Virus/genetics , MicroRNAs/genetics , Antigens, Viral, Tumor/genetics , DNA, Viral/genetics
14.
In Vitro Cell Dev Biol Anim ; 59(3): 224-233, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36971906

ABSTRACT

The Ryukyu long-furred rat is an endangered species confined to the southernmost three small islands of Japan (Amami-Oshima, Tokunoshima, and Okinawa). Its population is rapidly decreasing because of roadkill, deforestation, and feral animals. To date, its genomic and biological information are poorly understood. In this study, we successfully immortalized Ryukyu long-furred rat cells by expressing a combination of cell cycle regulators, mutant cyclin-dependent kinase 4 (CDK4R24C) and cyclin D1, together with telomerase reverse transcriptase or an oncogenic protein, the Simian Virus large T antigen. The cell cycle distribution, telomerase enzymatic activity, and karyotype of these two immortalized cell lines were analyzed. The karyotype of the former cell line immortalized with cell cycle regulators and telomerase reverse transcriptase retained the nature of the primary cells, while that of the latter cell line immortalized with the Simian Virus large T antigen had many aberrant chromosomes. These immortalized cells would be valuable for studying the genomics and biology of Ryukyu long-furred rats.


Subject(s)
Telomerase , Rats , Animals , Telomerase/genetics , Telomerase/metabolism , Cell Division , Cell Cycle , Cell Line , Antigens, Viral, Tumor/genetics
15.
J Virol ; 97(3): e0007723, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916919

ABSTRACT

Polyomavirus small T antigen (tAg) plays important roles in regulating viral replication, the innate immune response, apoptosis, and transformation for SV40, Merkel cell polyomavirus (MCPyV), murine polyomavirus (MuPyV), and JC polyomavirus (JCPyV). However, the function of BK polyomavirus (BKPyV) tAg has been much less studied. Here, we constructed mutant viruses that do not express tAg, and we showed that, in contrast with other polyomaviruses, BKPyV tAg inhibits large T antigen (TAg) gene expression and viral DNA replication. However, this occurs only in an archetype viral background. We also observed that the transduction of cells with a lentivirus-expressing BKPyV tAg kills the cells. We further discovered that BKPyV tAg interacts not only with PP2A A and C subunits, as has been demonstrated for other polyomavirus tAg proteins, but also with PP2A B''' subunit members. Knocking down either of two B''' subunits, namely STRN or STRN3, mimics the phenotype of the tAg mutant virus. However, a virus containing a point mutation in the PP2A binding domain of tAg only partially affected virus TAg expression and DNA replication. These results indicate that BKPyV tAg downregulates viral gene expression and DNA replication and that this occurs in part through interactions with PP2A. IMPORTANCE BK polyomavirus is a virus that establishes a lifelong infection of the majority of people. The infection usually does not cause any clinical symptoms, but, in transplant recipients whose immune systems have been suppressed, unchecked virus replication can cause severe disease. In this study, we show that a viral protein called small T antigen is one of the ways that the virus can persist without high levels of replication. Understanding which factors control viral replication enhances our knowledge of the virus life cycle and could lead to potential interventions for these patients.


Subject(s)
BK Virus , Polyomavirus Infections , Animals , Mice , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , BK Virus/physiology , DNA Replication , DNA, Viral/genetics , Virus Replication/physiology
16.
Viruses ; 15(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36992464

ABSTRACT

The human neurotropic Polyomavirus JCPyV is the widespread opportunistic causative pathogen of the fatal demyelinating disease progressive multifocal leukoencephalopathy; however, it has also been implicated in the oncogenesis of several types of cancers. It causes brain tumors when intracerebrally inoculated into rodents, and genomic sequences of different strains and expression of the viral protein large T-Antigen have been detected in a wide variety of glial brain tumors and CNS lymphomas. Here, we present a case of an AIDS-related multifocal primary CNS lymphoma in which JCPyV genomic sequences of the three regions of JCPyV and expression of T-Antigen were detected by PCR and immunohistochemistry, respectively. No capsid proteins were detected, ruling out active JCPyV replication. Sequencing of the control region revealed that Mad-4 was the strain of JCPyV present in tumor cells. In addition, expression of viral proteins LMP and EBNA-1 from another ubiquitous oncogenic virus, Epstein-Barr, was also detected in the same lymphocytic neoplastic cells, co-localizing with JCPyV T-Antigen, suggesting a potential collaboration between these two viruses in the process of malignant transformation of B-lymphocytes, which are the site of latency and reactivation for both viruses.


Subject(s)
Acquired Immunodeficiency Syndrome , Brain Neoplasms , JC Virus , Lymphoma, Large B-Cell, Diffuse , Polyomavirus , Humans , Polyomavirus/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , JC Virus/physiology , Viral Proteins/genetics , Antigens, Viral, Tumor/genetics , Central Nervous System/metabolism
17.
Cells ; 12(3)2023 01 20.
Article in English | MEDLINE | ID: mdl-36766726

ABSTRACT

Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics , Tumor Virus Infections/pathology , Antigens, Viral, Tumor/genetics , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/metabolism , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Skin Neoplasms/pathology , Cellular Senescence , Genome, Viral
18.
PLoS Pathog ; 18(12): e1011039, 2022 12.
Article in English | MEDLINE | ID: mdl-36574443

ABSTRACT

Merkel cell polyomavirus (MCV) is a small DNA tumor virus that persists in human skin and causes Merkel cell carcinoma (MCC) in immunocompromised individuals. The multi-functional protein MCV small T (sT) activates viral DNA replication by stabilizing large T (LT) and promotes cell transformation through the LT stabilization domain (LTSD). Using MCVΔsT, a mutant MCV clone that ablates sT, we investigated the role of sT in MCV genome maintenance. sT was dispensable for initiation of viral DNA replication, but essential for maintenance of the MCV genome and activation of viral early and late gene expression for progression of the viral lifecycle. Furthermore, in phenotype rescue studies, exogenous sT activated viral DNA replication and mRNA expression in MCVΔsT through the LTSD. While exogenous LT expression, which mimics LT stabilization, increased viral DNA replication, it did not activate viral mRNA expression. After cataloging transcriptional regulator proteins by proximity-based MCV sT-host protein interaction analysis, we validated LTSD-dependent sT interaction with four transcriptional regulators: Cux1, c-Jun, BRD9, and CBP. Functional studies revealed Cux1 and c-Jun as negative regulators, and CBP and BRD9 as positive regulators of MCV transcription. CBP inhibitor A-485 suppressed sT-induced viral gene activation in replicating MCVΔsT and inhibited early gene expression in MCV-integrated MCC cells. These results suggest that sT promotes viral lifecycle progression by activating mRNA expression and capsid protein production through interaction with the transcriptional regulators. This activity is essential for MCV genome maintenance, suggesting a critical role of sT in MCV persistence and MCC carcinogenesis.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Merkel cell polyomavirus/metabolism , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Viral Transcription , DNA Replication , Virus Replication , DNA, Viral/genetics , DNA, Viral/metabolism , Transcription Factors/metabolism , Skin Neoplasms/pathology , Genome, Viral , RNA, Messenger/metabolism , Polyomavirus Infections/metabolism
19.
Proc Natl Acad Sci U S A ; 119(49): e2216240119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442086

ABSTRACT

Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.


Subject(s)
Antigens, Viral, Tumor , DNA Helicases , Animals , Rabbits , Antigens, Viral, Tumor/genetics , DNA, Single-Stranded/genetics , DNA Replication , Eukaryota
20.
Viruses ; 14(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36298759

ABSTRACT

Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Merkel cell polyomavirus/genetics , Tumor Virus Infections/metabolism , Antigens, Viral, Tumor/genetics , Carcinogenesis/genetics , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...