Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.509
Filter
1.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696217

ABSTRACT

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Subject(s)
Nanoparticles , Porcine epidemic diarrhea virus , Viral Vaccines , Porcine epidemic diarrhea virus/immunology , Animals , Nanoparticles/chemistry , Swine , Mice , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Mice, Inbred BALB C , Antigens, Viral/immunology , Antigens, Viral/chemistry , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Domains/immunology , Female , Nanovaccines
2.
J Nanobiotechnology ; 22(1): 295, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807131

ABSTRACT

The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.


Subject(s)
Protein Sorting Signals , SARS-CoV-2 , mRNA Vaccines , Animals , Mice , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Mice, Inbred BALB C , RNA, Messenger/genetics , COVID-19 Vaccines/immunology , Female , Humans , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Antibodies, Viral/immunology , Immunity, Humoral , Vaccines, Synthetic/immunology , Immunity, Cellular
3.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38592735

ABSTRACT

The rotavirus capsid protein VP6 forms the middle of three protein layers and is responsible for many critical steps in the viral life cycle. VP6 as a structural protein can be used in various applications including as a subunit vaccine component. The head domain of VP6 (VP6H) contains key sequences that allow the protein to trimerize and that represent epitopes that are recognized by human antibodies in the viral particle. The domain is rich in ß-sheet secondary structures. Here, VP6H was solubilised from bacterial inclusion bodies and purified using a single affinity chromatography step. Spectral (far-UV circular dichroism and intrinsic tryptophan fluorescence) analysis revealed that the purified domain had native-like secondary and tertiary structures. The domain could maintain structure up to 44°C during thermal denaturation following which structural changes result in an intermediate forming and finally irreversible aggregation and denaturation. The chemical denaturation with urea and guanidinium hydrochloride produces intermediates that represent a loss in the cooperativity. The VP6H domain is stable and can fold to produce its native structure in the absence of the VP6 base domain but cannot be defined as an independent folding unit.


Subject(s)
Antigens, Viral , Capsid Proteins , Rotavirus , Capsid Proteins/chemistry , Capsid Proteins/genetics , Antigens, Viral/chemistry , Antigens, Viral/genetics , Rotavirus/chemistry , Protein Denaturation , Protein Domains , Circular Dichroism , Protein Folding , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Adv Healthc Mater ; 13(13): e2303619, 2024 May.
Article in English | MEDLINE | ID: mdl-38340040

ABSTRACT

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Subject(s)
Chikungunya virus , Zika Virus , Animals , Mice , Chikungunya virus/immunology , Zika Virus/immunology , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/chemistry , Mice, Inbred BALB C , Female , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Antigens, Viral/chemistry , Nanovaccines , Multienzyme Complexes
5.
J Virol ; 97(10): e0078023, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37702486

ABSTRACT

IMPORTANCE: AAVs are extensively studied as promising therapeutic gene delivery vectors. In order to circumvent pre-existing antibodies targeting primate-based AAV capsids, the AAAV capsid was evaluated as an alternative to primate-based therapeutic vectors. Despite the high sequence diversity, the AAAV capsid was found to bind to a common glycan receptor, terminal galactose, which is also utilized by other AAVs already being utilized in gene therapy trials. However, contrary to the initial hypothesis, AAAV was recognized by approximately 30% of human sera tested. Structural and sequence comparisons point to conserved epitopes in the fivefold region of the capsid as the reason determinant for the observed cross-reactivity.


Subject(s)
Antigens, Viral , Capsid , Parvovirinae , Animals , Humans , Capsid/chemistry , Capsid Proteins/chemistry , Dependovirus/chemistry , Genetic Vectors , Primates/genetics , Antigens, Viral/chemistry , Parvovirinae/chemistry
6.
Pediatr Res ; 94(2): 477-485, 2023 08.
Article in English | MEDLINE | ID: mdl-36658331

ABSTRACT

BACKGROUND: We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to used rotavirus vaccines. METHODS: Rotavirus-positive samples (n = 231) were collected and analyzed. The VP7 and VP4 genes were sequenced and analyzed against the rotavirus vaccine strains. Antigenic variations were illustrated on the three-dimensional models of surface proteins. RESULTS: In all, 59.7% of the hospitalized children were vaccinated, of which only 57.2% received two doses. There were no significant differences between the vaccinated and non-vaccinated groups in terms of clinical outcome. The G3 was the dominant genotype (40%) regardless of vaccination status. Several amino acid changes were identified in the VP7 and VP4 antigenic epitopes compared to the licensed vaccines. The highest variability was seen in the G3 (6 substitutions) and P[4] (11 substitutions) genotypes in comparison to RotaTeq®. In comparison to Rotarix®, G1 strains possessed three amino acid changes in 7-1a and 7-2 epitopes while P[8] strains possessed five amino acid changes in 8-1 and 8-3 epitopes. CONCLUSIONS: The current use of Rotarix® vaccine might not be effective in preventing the infection due to the higher numbers of G3-associated cases. The wide range of mutations in the antigenic epitopes compared to vaccine strains may compromise the vaccine's effectiveness. IMPACT: The reduced rotavirus vaccine effectiveness necessitate regular evaluation of the vaccine content to ensure optimal protection. We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to the Rotarix vaccine strain that is used in Qatar. The study highlight the importance for regular monitoring of emerging rotavirus variants and their impact on vaccine effectiveness in young children.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Child , Infant , Child, Preschool , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Qatar , Antigens, Viral/genetics , Antigens, Viral/chemistry , Capsid Proteins/genetics , Genotype , Epitopes/genetics
7.
Proc Natl Acad Sci U S A ; 119(25): e2203326119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696580

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Metapneumovirus , Paramyxoviridae Infections , Viral Fusion Proteins , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Antigens, Viral/chemistry , Antigens, Viral/immunology , Cryoelectron Microscopy , Epitopes/immunology , Humans , Metapneumovirus/immunology , Mice , Paramyxoviridae Infections/prevention & control , Primary Prevention , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology
8.
J Immunol ; 208(8): 1989-1997, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35365567

ABSTRACT

Regulatory T cells (Tregs) are critical for regulating immunopathogenic responses in a variety of infections, including infection of mice with JHM strain of mouse hepatitis virus (JHMV), a neurotropic coronavirus that causes immune-mediated demyelinating disease. Although virus-specific Tregs are known to mitigate disease in this infection by suppressing pathogenic effector T cell responses of the same specificity, it is unclear whether these virus-specific Tregs form memory populations and persist similar to their conventional T cell counterparts of the same epitope specificity. Using congenically labeled JHMV-specific Tregs, we found that virus-specific Tregs persist long-term after murine infection, through at least 180 d postinfection and stably maintain Foxp3 expression. We additionally demonstrate that these cells are better able to proliferate and inhibit virus-specific T cell responses postinfection than naive Tregs of the same specificity, further suggesting that these cells differentiate into memory Tregs upon encountering cognate Ag. Taken together, these data suggest that virus-specific Tregs are able to persist long-term in the absence of viral Ag as memory Tregs.


Subject(s)
Coronavirus Infections , Murine hepatitis virus , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Mice , T-Lymphocytes, Regulatory
9.
Science ; 375(6587): 1373-1378, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35239409

ABSTRACT

Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness. The entry of HNVs into host cells requires the attachment (G) and fusion (F) glycoproteins, which are the main targets of antibody responses. To understand viral infection and host immunity, we determined a cryo-electron microscopy structure of the NiV G homotetrameric ectodomain in complex with the nAH1.3 broadly neutralizing antibody Fab fragment. We show that a cocktail of two nonoverlapping G-specific antibodies neutralizes NiV and HeV synergistically and limits the emergence of escape mutants. Analysis of polyclonal serum antibody responses elicited by vaccination of macaques with NiV G indicates that the receptor binding head domain is immunodominant. These results pave the way for implementing multipronged therapeutic strategies against these deadly pathogens.


Subject(s)
Antigens, Viral , Glycoproteins , Nipah Virus , Viral Proteins , Virus Attachment , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigens, Viral/chemistry , Glycoproteins/chemistry , Glycoproteins/immunology , Humans , Nipah Virus/genetics , Nipah Virus/immunology , Protein Multimerization , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization
10.
PLoS One ; 17(2): e0262591, 2022.
Article in English | MEDLINE | ID: mdl-35113919

ABSTRACT

SARS-CoV-2 Nucleocapsid (N) is the most abundant viral protein expressed in host samples and is an important antigen for diagnosis. N is a 45 kDa protein that does not present disulfide bonds. Intending to avoid non-specific binding of SARS-CoV-2 N to antibodies from patients who previously had different coronaviruses, a 35 kDa fragment of N was expressed without a conserved motif in E. coli as inclusion bodies (N122-419-IB). Culture media and IB washing conditions were chosen to obtain N122-419-IB with high yield (370 mg/L bacterial culture) and protein purity (90%). High pressure solubilizes protein aggregates by weakening hydrophobic and ionic interactions and alkaline pH promotes solubilization by electrostatic repulsion. The association of pH 9.0 and 2.4 kbar promoted efficient solubilization of N122-419-IB without loss of native-like tertiary structure that N presents in IB. N122-419 was refolded with a yield of 85% (326 mg/L culture) and 95% purity. The refolding process takes only 2 hours and the protein is ready for use after pH adjustment, avoiding the necessity of dialysis or purification. Antibody binding of COVID-19-positive patients sera to N122-419 was confirmed by Western blotting. ELISA using N122-419 is effective in distinguishing between sera presenting antibodies against SARS-CoV-2 from those who do not. To the best of our knowledge, the proposed condition for IB solubilization is one of the mildest described. It is possible that the refolding process can be extended to a wide range of proteins with high yields and purity, even those that are sensible to very alkaline pH.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/chemistry , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Immunoglobulin G/blood , Inclusion Bodies/chemistry , Protein Refolding , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrogen-Ion Concentration , Hydrostatic Pressure , Immunoglobulin G/immunology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Solubility
11.
MAbs ; 14(1): 2021601, 2022.
Article in English | MEDLINE | ID: mdl-35030983

ABSTRACT

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Molecular Docking Simulation , Monte Carlo Method , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
12.
J Virol ; 96(3): e0125121, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34757842

ABSTRACT

Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma, for the treatment of spinal muscular atrophy and are being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of preexisting neutralizing antibodies in 40 to 80% of the general population. These preexisting antibodies can reduce therapeutic efficacy through viral neutralization and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction were used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs), ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound to or near the icosahedral 3-fold axes, HL2368 bound to the 2/5-fold wall, and HL2372 bound to the region surrounding the 5-fold axes. Pseudoatomic modeling enabled the mapping and identification of antibody contact amino acids on the capsid, including S454 and P659. These epitopes overlap previously defined parvovirus antigenic sites. Capsid amino acids critical for the interactions were confirmed by mutagenesis, followed by biochemical assays testing recombinant AAV9 (rAAV9) variants capable of escaping recognition and neutralization by the parental MAbs. These variants retained parental tropism and had similar or improved transduction efficiency compared to AAV9. These engineered rAAV9 variants could expand the patient cohort eligible for AAV9-mediated gene delivery by avoiding preexisting circulating neutralizing antibodies. IMPORTANCE The use of recombinant adeno-associated viruses (rAAVs) as delivery vectors for therapeutic genes is becoming increasingly popular, especially following the FDA approval of Luxturna and Zolgensma, based on serotypes AAV2 and AAV9, respectively. However, high-titer anti-AAV neutralizing antibodies in the general population exempt patients from treatment. The goal of this study is to circumvent this issue by creating AAV variant vectors not recognized by preexisting neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with preexisting AAV antibodies.


Subject(s)
Antigens, Viral/chemistry , Antigens, Viral/immunology , Dependovirus/immunology , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Specificity/immunology , Binding Sites , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cell Line , Cryoelectron Microscopy , Dependovirus/ultrastructure , Epitope Mapping/methods , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Conformation , Structure-Activity Relationship
13.
J Cell Biochem ; 123(2): 417-430, 2022 02.
Article in English | MEDLINE | ID: mdl-34783057

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor-binding domain (RBD) of the spike protein. RBD interacts with angiotensin-converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS-CoV-2. Our group utilizes computational biology approaches such as immunoinformatics, protein-protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.


Subject(s)
COVID-19/virology , Mutation, Missense , Pandemics , Point Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , Binding Sites , Computational Biology/methods , Energy Transfer , Epitopes/chemistry , Epitopes/immunology , Evolution, Molecular , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Stability , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
14.
PLoS Comput Biol ; 17(12): e1009664, 2021 12.
Article in English | MEDLINE | ID: mdl-34898597

ABSTRACT

The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.


Subject(s)
Evolution, Molecular , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/chemistry , Antigens, Viral/genetics , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immune Evasion/genetics , Influenza, Human/immunology , Influenza, Human/virology , Models, Immunological , Molecular Dynamics Simulation , Mutation , Pandemics , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
15.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Article in English | MEDLINE | ID: mdl-34898603

ABSTRACT

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Subject(s)
Antigens, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Epitopes, B-Lymphocyte/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Reactions/genetics , Antigen-Antibody Reactions/immunology , Computational Biology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/immunology , Databases, Chemical , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Mice , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Single-Domain Antibodies/immunology
16.
PLoS One ; 16(12): e0258311, 2021.
Article in English | MEDLINE | ID: mdl-34914702

ABSTRACT

There are a wide variety of porcine parvoviruses (PPVs) referred to as PPV1 to PPV7. The latter was discovered in 2016 and later reported in some countries in America, Asia, and Europe. PPV7 as a pathogenic agent or coinfection with other pathogens causing disease has not yet been determined. In the present study, we report the identification of PPV7 for the first time in Colombia, where it was found retrospectively since 2015 in 40% of the provinces that make up the country (13/32), and the virus was ratified for 2018 in 4/5 provinces evaluated. Additionally, partial sequencing (nucleotides 380 to 4000) was performed of four Colombian strains completely covering the VP2 and NS1 viral genes. A sequence identity greater than 99% was found when comparing them with reference strains from the USA and China. In three of the four Colombian strains, an insertion of 15 nucleotides (five amino acids) was found in the PPV7-VP2 capsid protein (540-5554 nt; 180-184 aa). Based on this insertion, the VP2 phylogenetic analysis exhibited two well-differentiated evolutionarily related groups. To evaluate the impact of this insertion on the structure of the PPV7-VP2 capsid protein, the secondary structure of two different Colombian strains was predicted, and it was determined that the insertion is located in the coil region and not involved in significant changes in the structure of the protein. The 3D structure of the PPV7-VP2 capsid protein was determined by threading and homology modeling, and it was shown that the insertion did not imply a change in the shape of the protein. Additionally, it was determined that the insertion is not involved in suppressing a potential B cell epitope, although the increase in length of the epitope could affect the interaction with molecules that allow a specific immune response.


Subject(s)
Antigens, Viral , Capsid Proteins , Parvoviridae Infections/genetics , Parvovirus, Porcine , Phylogeny , Swine Diseases/genetics , Swine Diseases/virology , Animals , Antigens, Viral/chemistry , Antigens, Viral/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Colombia , Parvoviridae Infections/veterinary , Parvovirus, Porcine/chemistry , Parvovirus, Porcine/genetics , Parvovirus, Porcine/isolation & purification , Protein Domains , Swine
17.
Nucleic Acids Res ; 49(22): 12895-12911, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850113

ABSTRACT

Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.


Subject(s)
Antigens, Viral/genetics , Gene Expression Regulation, Viral , Herpesvirus 8, Human/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Sarcoma, Kaposi/genetics , Virus Latency/genetics , Antigens, Viral/chemistry , Antigens, Viral/metabolism , Cell Line, Tumor , Crystallography, X-Ray , DNA, Viral/genetics , DNA, Viral/metabolism , Gene Knockdown Techniques , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/physiology , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Host-Pathogen Interactions/genetics , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation , Sarcoma, Kaposi/virology
18.
Science ; 374(6575): 1621-1626, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34751595

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission leads to the emergence of variants, including the B.1.617.2 (Delta) variant of concern that is causing a new wave of infections and has become globally dominant. We show that these variants dampen the in vitro potency of vaccine-elicited serum neutralizing antibodies and provide a structural framework for describing their immune evasion. Mutations in the B.1.617.1 (Kappa) and Delta spike glycoproteins abrogate recognition by several monoclonal antibodies via alteration of key antigenic sites, including remodeling of the Delta amino-terminal domain. The angiotensin-converting enzyme 2 binding affinities of the Kappa and Delta receptor binding domains are comparable to the Wuhan-Hu-1 isolate, whereas B.1.617.2+ (Delta+) exhibits markedly reduced affinity.


Subject(s)
COVID-19 Vaccines/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Ad26COVS1/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , BNT162 Vaccine/immunology , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
Curr Opin Virol ; 51: 199-206, 2021 12.
Article in English | MEDLINE | ID: mdl-34749266

ABSTRACT

Outbreaks of enteroviral infections are associated with morbidity and mortality in susceptible individuals worldwide. There are still no antiviral drugs or vaccines against most circulating enteroviruses. Antibody-mediated immunity is crucial for preventing and limiting enteroviral infections. In this review, we focus on enteroviruses that continue to cause endemics in recent years, such as rhinovirus, enterovirus A71, coxsackievirus, and echovirus, and introduce a structural understanding of the mechanisms of virus neutralization. The mechanisms by which virus-specific antibodies neutralize enteroviruses have been explored not only through study of viral structures, but also through understanding virus-antibody interactions at the amino acid level. Neutralizing epitopes are predominantly mapped on the canyon northern rim, canyon inner surface, canyon southern rim, and twofold and threefold plateaus of the capsid, where surface-exposed loops are located. This review also describes recent progress in deciphering the virus-receptor complex and structural rearrangements involved in the uncoating process, providing insight into plausible virus neutralization mechanisms.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Enterovirus Infections/immunology , Enterovirus Infections/virology , Enterovirus/immunology , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Capsid Proteins/chemistry , Capsid Proteins/immunology , Endemic Diseases , Humans
20.
EBioMedicine ; 73: 103648, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34706308

ABSTRACT

BACKGROUND: Rotavirus A (RVA) causes acute gastroenteritis in children <5 years of age in sub-Saharan Africa. In this study, we described the epidemiology and genetic diversity of RVA infecting Gabonese children and examined the antigenic variability of circulating strains in relation to available vaccine strains to maximize the public health benefits of introducing rotavirus vaccine through the Expanded Programme on Immunization (EPI) in Gabon. METHODS: Stool samples were collected consecutively between April 2018 and November 2019 from all hospitalized children <5 years with gastroenteritis and community controls without gastroenteritis. Children were tested for rotavirus A by quantitative RT-PCR and subsequently sequenced to identify circulating rotavirus A genotypes in the most vulnerable population. The VP7 and VP4 (VP8*) antigenic epitopes were mapped to homologs of vaccine strains to assess structural variability and potential impact on antigenicity. FINDINGS: Infections were mostly acquired during the dry season. Rotavirus A was detected in 98/177 (55%) hospitalized children with gastroenteritis and 14/67 (21%) of the control children. The most common RVA genotypes were G1 (18%), G3 (12%), G8 (18%), G9 (2%), G12 (25%), with G8 and G9 reported for the first time in Gabon. All were associated either with P[6] (31%) or P[8] (38%) genotypes. Several non-synonymous substitutions were observed in the antigenic epitopes of VP7 (positions 94 and 147) and VP8* (positions 89, 116, 146 and 150), which may modulate the elicited immune responses. INTERPRETATION: This study contributes to the epidemiological surveillance of rotavirus A required before the introduction of rotavirus vaccination in the EPI for Gabonese children.


Subject(s)
Antigenic Variation , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genetic Variation , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Child, Preschool , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Female , Gabon/epidemiology , Genotype , Humans , Infant , Infant, Newborn , Male , Molecular Epidemiology , Phylogeny , Prevalence , Public Health Surveillance , Rotavirus/classification , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...