Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.435
Filter
1.
Amino Acids ; 56(1): 34, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691208

ABSTRACT

Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.


Subject(s)
Antimicrobial Cationic Peptides , Apoptosis , DNA-Binding Proteins , Peptides, Cyclic , Plasmids , Animals , Apoptosis/drug effects , Humans , Mice , Female , Antimicrobial Cationic Peptides/pharmacology , Peptides, Cyclic/pharmacology , MCF-7 Cells , Cell Proliferation/drug effects , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , DNA , Mice, Inbred BALB C
2.
PLoS One ; 19(5): e0302913, 2024.
Article in English | MEDLINE | ID: mdl-38728358

ABSTRACT

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Subject(s)
Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
3.
BMC Gastroenterol ; 24(1): 182, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778244

ABSTRACT

Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) has become the leading cause of chronic liver disease. Liver biopsy, as the diagnostic gold standard, is invasive and has sampling bias, making it particularly important to search for sensitive and specific biomarkers for diagnosis. Cytokeratin 18 (CK18) M30 and M65 are products of liver cell apoptosis and necrosis, respectively, and liver-expressed antimicrobial peptide 2 (LEAP-2) is a related indicator of glucose and lipid metabolism. Correlation studies have found that all three indicators positively correlate with the liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Through comparison of diagnostic values, it was found that CK18 M65 can better distinguish between healthy individuals and MAFLD; LEAP-2 can effectively distinguish MAFLD from other liver diseases, especially ALD.


Subject(s)
Alanine Transaminase , Aspartate Aminotransferases , Biomarkers , Keratin-18 , Liver , Humans , Keratin-18/blood , Biomarkers/blood , Liver/pathology , Biopsy , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Antimicrobial Cationic Peptides/blood , Male , Middle Aged , Female , Fatty Liver/diagnosis , Fatty Liver/pathology , Fatty Liver/blood , Adult , Sensitivity and Specificity , Peptide Fragments
4.
Med Oncol ; 41(6): 162, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767753

ABSTRACT

Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.


Subject(s)
Breast Neoplasms , Cell Proliferation , Proto-Oncogene Proteins c-akt , Signal Transduction , bcl-2-Associated X Protein , Humans , Proto-Oncogene Proteins c-akt/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Apoptosis , MCF-7 Cells , Amphibian Proteins/genetics , Amphibian Proteins/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Transfection
5.
PLoS One ; 19(5): e0299257, 2024.
Article in English | MEDLINE | ID: mdl-38696394

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS: One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS: During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION: Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.


Subject(s)
Acute Kidney Injury , Antimicrobial Cationic Peptides , Blood Proteins , Hepcidins , Shock, Septic , Humans , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Hepcidins/blood , Male , Female , Shock, Septic/blood , Shock, Septic/complications , Aged , Middle Aged , Blood Proteins/metabolism , Carrier Proteins/blood , Community-Acquired Infections/complications , Community-Acquired Infections/blood , Biomarkers/blood , Intensive Care Units , Creatinine/blood , Aged, 80 and over
6.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38714021

ABSTRACT

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Hemolysis , Lysine , Microbial Sensitivity Tests , Lysine/chemistry , Lysine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Hemolysis/drug effects , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Structure-Activity Relationship , Proteolysis/drug effects , Humans , Molecular Structure
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732089

ABSTRACT

Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.


Subject(s)
Antimicrobial Peptides , Humans , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Clinical Trials as Topic , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
8.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732603

ABSTRACT

BACKGROUND: Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS: We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS: In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS: This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Cathelicidins , Macrophages , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Receptors, Calcitriol , Toll-Like Receptor 2 , Vitamin D , p38 Mitogen-Activated Protein Kinases , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Humans , Toll-Like Receptor 2/metabolism , Macrophages/metabolism , Macrophages/microbiology , Vitamin D/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, Calcitriol/metabolism , Caco-2 Cells , Paratuberculosis/microbiology , Antimicrobial Cationic Peptides/metabolism , THP-1 Cells , MAP Kinase Signaling System , Calcitriol/pharmacology , Signal Transduction
9.
Nat Commun ; 15(1): 3945, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730238

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Subject(s)
Antimicrobial Cationic Peptides , Molecular Dynamics Simulation , Ribosomes , Ribosomes/metabolism , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Protein Biosynthesis , Binding Sites , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Peptide Termination Factors/metabolism , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Binding , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology
10.
Acta Biomater ; 181: 98-116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697382

ABSTRACT

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Subject(s)
Antimicrobial Peptides , Bacteria , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
11.
Int J Biol Macromol ; 270(Pt 1): 132277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735611

ABSTRACT

The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Hyaluronic Acid , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Wound Healing/drug effects , Bacterial Infections/drug therapy , Mice , Diabetes Mellitus, Experimental , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Hyaluronoglucosaminidase/metabolism , Cathelicidins , Humans , Diabetes Complications/drug therapy , Nanoparticles/chemistry
12.
Front Cell Infect Microbiol ; 14: 1390934, 2024.
Article in English | MEDLINE | ID: mdl-38812753

ABSTRACT

Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 µg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 µg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Animals , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Antimicrobial Peptides/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cathelicidins
13.
J Med Life ; 17(2): 205-209, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38813360

ABSTRACT

Periodontitis is an infection-driven inflammatory condition of the periodontium. Neutrophils are one of the most important first-line immune cells that protect against pathogen microorganisms in the saliva, but they may also mediate tissue death in inflammatory disorders. The aim of our study was to estimate salivary levels of azurocidin and extracellular azurophilic granules cluster of differentiation (CD63) as biomarkers of neutrophil activation in patients with periodontal diseases and to study the correlation between the levels of these two biomarkers and clinical periodontal parameters. The study included 60 patients with periodontal disease (30 patients with periodontitis and 30 with gingivitis) and 25 healthy controls. The assessed parameters were bleeding on probing, the plaque index, clinical attachment loss, and probing pocket depth. Saliva samples were taken from each study participant, and azurocidin and CD63 levels were measured using ELISA. Azurocidin and CD63 levels were significantly higher in patients with periodontitis and patients with gingivitis than in controls (P < 0.05), and significantly higher in patients with periodontitis than in patients with gingivitis (P < 0.05). Moreover, we found a significant positive correlation between the two biomarkers with clinical attachment loss in the periodontitis group. This study has shown that increased salivary azurocidin and extracellular CD63 levels are associated with enhanced innate response in periodontal disease and can be considered biomarkers of neutrophil activation.


Subject(s)
Biomarkers , Periodontal Diseases , Saliva , Humans , Saliva/metabolism , Male , Female , Adult , Biomarkers/metabolism , Periodontal Diseases/metabolism , Periodontal Diseases/pathology , Antimicrobial Cationic Peptides/metabolism , Middle Aged , Case-Control Studies , Gingivitis/metabolism , Gingivitis/pathology , Periodontitis/metabolism , Periodontitis/pathology , Salivary Proteins and Peptides/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Blood Proteins
14.
Soft Matter ; 20(20): 4088-4101, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712559

ABSTRACT

This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt ß-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.


Subject(s)
Antimicrobial Peptides , Humans , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects
15.
Int J Biol Macromol ; 269(Pt 2): 132025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704076

ABSTRACT

The intestine defends against pathogenic microbial invasion via the secretion of host defense peptides (HDPs). Nutritional immunomodulation can stimulate the expression of endogenous HDPs and enhance the body's immune defense, representing a novel non-antibiotic strategy for disease prevention. The project aims to explore the regulatory mechanism of protegrin-1 (PG-1) expression using sodium phenylbutyrate (PBA) by omics sequencing technology and further investigate the role of key regulatory genes on intestinal health. The results showed that PBA promoted PG-1 expression in intestinal epithelial cells based on cell density through epidermal growth factor receptor (EGFR) and G protein-coupled receptor (GPR43). Transcriptome sequencing and microRNA sequencing revealed that C-X-C motif chemokine receptor 2 (CXCR2) exhibited interactions with PG-1. Pre-treatment cells with a CXCR2 inhibitor (SB225002) effectively suppressed the induction of PG-1 by PBA. Furthermore, SB225002 significantly suppressed the gene expression of HDPs in the jejunum of mice without influencing on the morphology, number of goblet cells, and proliferation of the intestine. CXCR2 inhibition significantly reduced the expression of HDPs during E. coli infection, and resulted in the edema of jejunal epithelial cells. The 16S rDNA analysis of cecal contents showed that the E. coli and SB225002 treatments changed gut microbiota diversity and composition at different taxonomic levels. Correlation analysis suggested a potential regulatory relationship between gut microbiota and HDPs. To that end, a gene involved in the HDP expression, CXCR2, has been identified in the study, which contributes to improving intestinal immune function. PBA may be used as a functional additive to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.


Subject(s)
Homeostasis , Intestinal Mucosa , Receptors, Interleukin-8B , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Mice , Homeostasis/drug effects , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Male , Escherichia coli Infections/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Receptors, G-Protein-Coupled
16.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740721

ABSTRACT

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
17.
Int J Nanomedicine ; 19: 4495-4513, 2024.
Article in English | MEDLINE | ID: mdl-38799696

ABSTRACT

Background: Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods: A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results: The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion: This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.


Subject(s)
Anti-Bacterial Agents , Electric Conductivity , Hydrogels , Nanocomposites , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Electric Stimulation , Gelatin/chemistry , Humans , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Fibroblasts/drug effects , Titanium/chemistry , Titanium/pharmacology , Male , Cell Proliferation/drug effects , Electric Stimulation Therapy/methods
18.
Mol Pharm ; 21(6): 2751-2766, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38693707

ABSTRACT

Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.


Subject(s)
Gallium Radioisotopes , Animals , Tissue Distribution , Mice , Gallium Radioisotopes/pharmacokinetics , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/administration & dosage , Lung/metabolism , Lung/drug effects , Peptides/chemistry , Peptides/pharmacokinetics , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Male , Immunity, Innate/drug effects , Antimicrobial Cationic Peptides/pharmacokinetics , Antimicrobial Cationic Peptides/chemistry
19.
Amino Acids ; 56(1): 28, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578302

ABSTRACT

In the face of increasing antimicrobial resistance in aquaculture, researchers are exploring novel substitutes to customary antibiotics. One potential solution is the use of antimicrobial peptides (AMPs). We aimed to design and evaluate a novel, short, and compositionally simple AMP with potent activity against various bacterial pathogens in aquaculture. The resulting peptide, KK12YW, has an amphipathic nature and net charge of + 7. Molecular docking experiments disclosed that KK12YW has a strong affinity for aerolysin, a virulence protein produced by the bacterial pathogen Aeromonas sobria. KK12YW was synthesized using Fmoc chemistry and tested against a range of bacterial pathogens, including A. sobria, A. salmonicida, A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and methicillin-resistant S. aureus. The AMP showed promising antibacterial activity, with MIC and MBC values ranging from 0.89 to 917.1 µgmL-1 and 3.67 to 1100.52 µgmL-1, respectively. In addition, KK12YW exhibited resistance to high temperatures and remained effective even in the presence of serum and salt, indicating its stability. The peptide also demonstrated minimal hemolysis toward fish RBCs, even at higher concentrations. Taken together, these findings indicate that KK12YW could be a highly promising and viable substitute for conventional antibiotics to combat microbial infections in aquaculture.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Molecular Docking Simulation , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli , Fishes , Microbial Sensitivity Tests
20.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622637

ABSTRACT

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Endopeptidases , Animals , Mice , Antimicrobial Peptides , Antimicrobial Cationic Peptides , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/drug therapy , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...