Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.192
Filter
1.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38714021

ABSTRACT

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Hemolysis , Lysine , Microbial Sensitivity Tests , Lysine/chemistry , Lysine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Hemolysis/drug effects , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Structure-Activity Relationship , Proteolysis/drug effects , Humans , Molecular Structure
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732089

ABSTRACT

Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.


Subject(s)
Antimicrobial Peptides , Humans , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Clinical Trials as Topic , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
3.
Nat Commun ; 15(1): 3945, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730238

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Subject(s)
Antimicrobial Cationic Peptides , Molecular Dynamics Simulation , Ribosomes , Ribosomes/metabolism , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Protein Biosynthesis , Binding Sites , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Peptide Termination Factors/metabolism , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Binding , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology
4.
Acta Biomater ; 181: 98-116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697382

ABSTRACT

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Subject(s)
Antimicrobial Peptides , Bacteria , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
5.
Int J Biol Macromol ; 270(Pt 1): 132277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735611

ABSTRACT

The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Hyaluronic Acid , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Wound Healing/drug effects , Bacterial Infections/drug therapy , Mice , Diabetes Mellitus, Experimental , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Hyaluronoglucosaminidase/metabolism , Cathelicidins , Humans , Diabetes Complications/drug therapy , Nanoparticles/chemistry
6.
Soft Matter ; 20(20): 4088-4101, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712559

ABSTRACT

This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt ß-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.


Subject(s)
Antimicrobial Peptides , Humans , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects
7.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740721

ABSTRACT

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
8.
Int J Nanomedicine ; 19: 4495-4513, 2024.
Article in English | MEDLINE | ID: mdl-38799696

ABSTRACT

Background: Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods: A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results: The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion: This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.


Subject(s)
Anti-Bacterial Agents , Electric Conductivity , Hydrogels , Nanocomposites , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Electric Stimulation , Gelatin/chemistry , Humans , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Fibroblasts/drug effects , Titanium/chemistry , Titanium/pharmacology , Male , Cell Proliferation/drug effects , Electric Stimulation Therapy/methods
9.
Mol Pharm ; 21(6): 2751-2766, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38693707

ABSTRACT

Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.


Subject(s)
Gallium Radioisotopes , Animals , Tissue Distribution , Mice , Gallium Radioisotopes/pharmacokinetics , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/administration & dosage , Lung/metabolism , Lung/drug effects , Peptides/chemistry , Peptides/pharmacokinetics , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Male , Immunity, Innate/drug effects , Antimicrobial Cationic Peptides/pharmacokinetics , Antimicrobial Cationic Peptides/chemistry
10.
Amino Acids ; 56(1): 28, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578302

ABSTRACT

In the face of increasing antimicrobial resistance in aquaculture, researchers are exploring novel substitutes to customary antibiotics. One potential solution is the use of antimicrobial peptides (AMPs). We aimed to design and evaluate a novel, short, and compositionally simple AMP with potent activity against various bacterial pathogens in aquaculture. The resulting peptide, KK12YW, has an amphipathic nature and net charge of + 7. Molecular docking experiments disclosed that KK12YW has a strong affinity for aerolysin, a virulence protein produced by the bacterial pathogen Aeromonas sobria. KK12YW was synthesized using Fmoc chemistry and tested against a range of bacterial pathogens, including A. sobria, A. salmonicida, A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and methicillin-resistant S. aureus. The AMP showed promising antibacterial activity, with MIC and MBC values ranging from 0.89 to 917.1 µgmL-1 and 3.67 to 1100.52 µgmL-1, respectively. In addition, KK12YW exhibited resistance to high temperatures and remained effective even in the presence of serum and salt, indicating its stability. The peptide also demonstrated minimal hemolysis toward fish RBCs, even at higher concentrations. Taken together, these findings indicate that KK12YW could be a highly promising and viable substitute for conventional antibiotics to combat microbial infections in aquaculture.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Molecular Docking Simulation , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli , Fishes , Microbial Sensitivity Tests
11.
Sci Rep ; 14(1): 9701, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678109

ABSTRACT

Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.


Subject(s)
Antimicrobial Cationic Peptides , Molecular Dynamics Simulation , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Static Electricity
12.
Eur J Pharm Sci ; 197: 106776, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663759

ABSTRACT

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.


Subject(s)
Biofilms , Drug Resistance, Multiple, Bacterial , Hemolysis , Microbial Sensitivity Tests , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Biofilms/drug effects , Hemolysis/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Animals , Fungi/drug effects , Cell Survival/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Gram-Negative Bacteria/drug effects
13.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673786

ABSTRACT

Antimicrobial peptides (AMPs) are viewed as potential compounds for the treatment of bacterial infections. Nevertheless, the successful translation of AMPs into clinical applications has been impeded primarily due to their low stability in biological environments and potential toxicological concerns at higher concentrations. The covalent attachment of AMPs to a material's surface has been sought to improve their stability. However, it is still an open question what is required to best perform such an attachment and the role of the support. In this work, six different AMPs were covalently attached to a long-ranged ordered amphiphilic hydrogel, with their antibacterial efficacy evaluated and compared to their performance when free in solution. Among the tested AMPs were four different versions of synthetic end-tagged AMPs where the sequence was altered to change the cationic residue as well as to vary the degree of hydrophobicity. Two previously well-studied AMPs, Piscidin 1 and Omiganan, were also included as comparisons. The antibacterial efficacy against Staphylococcus aureus remained largely consistent between free AMPs and those attached to surfaces. However, the activity pattern against Pseudomonas aeruginosa on hydrogel surfaces displayed a marked contrast to that observed in the solution. Additionally, all the AMPs showed varying degrees of hemolytic activity when in solution. This activity was entirely diminished, and all the AMPs were non-hemolytic when attached to the hydrogels.


Subject(s)
Anti-Bacterial Agents , Hemolysis , Hydrogels , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Erythrocytes/drug effects
14.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673985

ABSTRACT

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Humans , Anura , Skin/microbiology , Skin/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
15.
Biochim Biophys Acta Biomembr ; 1866(5): 184330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679311

ABSTRACT

To clarify the damage of lipid bilayer region in bacterial cell membrane caused by antimicrobial peptides (AMPs) and antimicrobial compounds (AMCs), their interactions with giant unilamellar vesicles (GUVs) of various lipid compositions have been examined. The findings revealed two main causes for the leakage: nanopore formation in the membrane and burst of GUVs. Although GUV burst has been explained previously based on the carpet model, the supporting evidence is limited. In this review, to better clarify the mechanism of GUV burst by AMPs, AMCs, and other membrane-active peptides, we described current knowledge of the conditions, characteristics, and detailed processes of GUV burst and the changes in the shape of the GUVs during burst. We identified several physical factors that affect GUV burst, such as membrane tension, electrostatic interaction, structural changes of GUV membrane such as membrane folding, and oil in the membrane. We also clarified one of the physical mechanisms underlying the instability of lipid bilayers that are associated with leakage in the carpet model. Based on these results, we propose a mechanism underlying some types of GUV burst induced by these substances: the growth of a nanopore to a micropore, resulting in GUV burst.


Subject(s)
Antimicrobial Peptides , Lipid Bilayers , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
16.
Biophys Chem ; 310: 107251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678820

ABSTRACT

The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Spin Labels , Magainins/chemistry , Magainins/pharmacology , Lipid Bilayers/chemistry , Electron Spin Resonance Spectroscopy , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
17.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675537

ABSTRACT

Rapid detection of heparin-binding protein (HBP) is essential for timely intervention in sepsis cases. Current detection techniques are usually antibody-based immunological methods, which have certain problems, such as complexity and slow detection, and fall short in meeting the urgency of clinical needs. The application of an aptamer can address these concerns well. In this study, HBP-specific DNA aptamers were screened first. Among which, Apt-01, Apt-02, and Apt-13 had a high affinity for HBP, exhibiting impressive KD values of 3.42, 1.44, and 1.04 nmol/L, respectively. Then, the aptamer of HBP and its partially complementary primer probe were combined to form double-stranded DNA (dsDNA) and synthesize a circular DNA template. The template is complementary to the primer probe, but due to the presence of dsDNA, ExoIII cleaves C2-13 as an RCA primer probe, rendering the template unable to recognize the primer probe and preventing the RCA reaction from proceeding. When the target is present, it competes with the adapter for recognition and releases C2-13, exposing its 3' end. After initiating the RCA at room temperature and reacting with SYBR GreenII at 37 °C for 20 min, fluorescence changes can be observed and quantitatively analyzed at a 530 nm wavelength, achieving quantitative biological analysis. Apt-01 was used to develop a fluorescent biosensor for HBP detection, which exhibited a good linear range (0.01 nmol/L to 10 nmol/L) and detection limit (0.0056 nmol/L). This advancement holds the potential to lay a solid groundwork for pioneering sensitive and specific methods for HBP detection and to significantly enhance the diagnostic processes for sepsis.


Subject(s)
Antimicrobial Cationic Peptides , Aptamers, Nucleotide , Biosensing Techniques , Blood Proteins , Humans , Antimicrobial Cationic Peptides/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Blood Proteins/chemistry , DNA/chemistry , Limit of Detection
18.
Biochem Biophys Res Commun ; 712-713: 149913, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38640738

ABSTRACT

Innate immunity of invertebrates offers potent antimicrobial peptides (AMPs) against drug-resistant infections. To identify new worm ß-hairpin AMPs, we explored the sequence diversity of proteins with a BRICHOS domain, which comprises worm AMP precursors. Strikingly, we discovered new BRICHOS AMPs not in worms, but in caecilians, the least studied clade of vertebrates. Two precursor proteins from Microcaecilia unicolor and Rhinatrema bivittatum resemble SP-C lung surfactants and bear worm AMP-like peptides at C-termini. The analysis of M. unicolor tissue transcriptomes shows that the AMP precursor is highly expressed in the lung along with regular SP-C, suggesting a different, protective function. The peptides form right-twisted ß-hairpins, change conformation upon lipid binding, and rapidly disrupt bacterial membranes. Both peptides exhibit broad-spectrum activity against multidrug-resistant ESKAPE pathogens with 1-4 µM MICs and remarkably low toxicity, giving 40-70-fold selectivity towards bacteria. These BRICHOS AMPs, previously unseen in vertebrates, reveal a novel lung innate immunity mechanism and offer a promising antibiotics template.


Subject(s)
Antimicrobial Peptides , Lung , Animals , Amino Acid Sequence , Amphibians/immunology , Amphibians/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Immunity, Innate , Lung/immunology , Lung/metabolism , Microbial Sensitivity Tests
19.
ACS Appl Bio Mater ; 7(4): 2023-2035, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38533844

ABSTRACT

The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.


Subject(s)
Anti-Infective Agents , Communicable Diseases , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Ecosystem , Drug Resistance, Bacterial , Communicable Diseases/drug therapy , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Adjuvants, Immunologic
20.
Biomolecules ; 14(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38540740

ABSTRACT

Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/ß defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.


Subject(s)
Anti-Infective Agents , Cathelicidins , Humans , Antimicrobial Cationic Peptides/chemistry , Anti-Infective Agents/pharmacology , Wound Healing , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...