Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
BMC Vet Res ; 20(1): 243, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835040

ABSTRACT

BACKGROUND: The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS: The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS: Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.


Subject(s)
Amino Acid Sequence , Animals , Structure-Activity Relationship , Fish Diseases/microbiology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Disulfides/chemistry , Phylogeny , Aeromonas hydrophila/drug effects , Base Sequence
2.
Front Immunol ; 15: 1384193, 2024.
Article in English | MEDLINE | ID: mdl-38694504

ABSTRACT

The common bed bug, Cimex lectularius, is an urban pest of global health significance, severely affecting the physical and mental health of humans. In contrast to most other blood-feeding arthropods, bed bugs are not major vectors of pathogens, but the underlying mechanisms for this phenomenon are largely unexplored. Here, we present the first transcriptomics study of bed bugs in response to immune challenges. To study transcriptional variations in bed bugs following ingestion of bacteria, we extracted and processed mRNA from body tissues of adult male bed bugs after ingestion of sterile blood or blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis or the Gram-negative (Gr-) bacterium Escherichia coli. We analyzed mRNA from the bed bugs' midgut (the primary tissue involved in blood ingestion) and from the rest of their bodies (RoB; body minus head and midgut tissues). We show that the midgut exhibits a stronger immune response to ingestion of bacteria than the RoB, as indicated by the expression of genes encoding antimicrobial peptides (AMPs). Both the Toll and Imd signaling pathways, associated with immune responses, were highly activated by the ingestion of bacteria. Bacterial infection in bed bugs further provides evidence for metabolic reconfiguration and resource allocation in the bed bugs' midgut and RoB to promote production of AMPs. Our data suggest that infection with particular pathogens in bed bugs may be associated with altered metabolic pathways within the midgut and RoB that favors immune responses. We further show that multiple established cellular immune responses are preserved and are activated by the presence of specific pathogens. Our study provides a greater understanding of nuances in the immune responses of bed bugs towards pathogens that ultimately might contribute to novel bed bug control tactics.


Subject(s)
Bedbugs , Gene Expression Profiling , Transcriptome , Animals , Bedbugs/immunology , Bedbugs/genetics , Male , Escherichia coli/immunology , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Signal Transduction/immunology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/immunology
3.
Nat Commun ; 15(1): 4216, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760394

ABSTRACT

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Alanine , Antimicrobial Peptides , Macrophages , Mycobacterium tuberculosis , NF-kappa B , Tuberculosis , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Mice , NF-kappa B/metabolism , Humans , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Alanine/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Alanine Dehydrogenase/metabolism , Alanine Dehydrogenase/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction , Mice, Inbred C57BL , RAW 264.7 Cells , Female
4.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755524

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Defensins , Diptera , Larva , Animals , Defensins/pharmacology , Defensins/genetics , Defensins/chemistry , Defensins/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diptera/genetics , Larva/drug effects , Larva/genetics , Microbial Sensitivity Tests , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/pharmacology , Insect Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Gram-Negative Bacteria/drug effects
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732132

ABSTRACT

Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.


Subject(s)
Hemiptera , Insect Proteins , Animals , Hemiptera/genetics , Hemiptera/immunology , Insect Proteins/genetics , Insect Proteins/immunology , Transcriptome/genetics , Phylogeny , Antimicrobial Peptides/genetics , Galectins/genetics , Galectins/metabolism , Carrier Proteins
6.
Arch Microbiol ; 206(6): 280, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805035

ABSTRACT

Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Bacteria/drug effects , Bacteria/genetics , Humans , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Drug Delivery Systems , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , CRISPR-Cas Systems , Animals
7.
Front Biosci (Landmark Ed) ; 29(5): 180, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38812316

ABSTRACT

BACKGROUND: The epithelia of the intestine perform various functions, playing a crucial role in providing a physical barrier and an innate immune defense against infections. By generating a "three-dimensional" (3D) model of cell co-cultures using the IPEC-J2 cell line and porcine blood monocyte-derived macrophages (MDMs), we are getting closer to mimicking the porcine intestine ex vivo.Methods: The effect of Limosilactobacillus reuteri B1/1 and Limosilactobacillus fermentum CCM 7158 (indicator strain) on the relative gene expression of interleukins (IL-1ß, IL-6, IL-8, IL-18 and IL-10), genes encoding receptors for TLR4 and TLR2, tight junction proteins such as claudin-1 (CLDN1), occludin (OCLN) and important antimicrobial proteins such as lumican (LUM) and olfactomedin-4 (OLMF-4) was monitored in this model. RESULTS: The results obtained from this pilot study point to the immunomodulatory potential of newly isolated L. reuteri B1/1, as it was able to suppress the enhanced pro-inflammatory response to lipopolysaccharide (LPS) challenge in both cell types. L. reuteri B1/1 was even able to up-regulate the mRNA levels of genes encoding antimicrobial proteins LUM and OLFM-4 and to increase tight junction (TJ)-related genes CLDN1 and OCLN, which were significantly down-regulated in LPS-induced IPEC-J2 cells. Conversely, L. fermentum CCM 7158, chosen as an indicator lactic acid bacteria (LAB) strain, increased the mRNA levels of the investigated pro-inflammatory cytokines (IL-18, IL-6, and IL-1ß) in MDMs when LPS was simultaneously applied to basally deposited macrophages. Although L. fermentum CCM 7158 induced the production of pro-inflammatory cytokines, synchronous up-regulation of the anti-inflammatory cytokine IL-10 was detected in both LAB strains used in both cell cultures. CONCLUSIONS: The obtained results suggest that the recently isolated LAB strain L. reuteri B1/1 has the potential to alleviate epithelial disruption caused by LPS and to influence the production of antimicrobial molecules by enterocytes.


Subject(s)
Cytokines , Limosilactobacillus reuteri , Animals , Cytokines/metabolism , Cytokines/genetics , Swine , Limosilactobacillus reuteri/metabolism , Cell Line , Macrophages/metabolism , Macrophages/immunology , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Coculture Techniques
8.
Int J Biol Macromol ; 270(Pt 1): 132242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729487

ABSTRACT

Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.


Subject(s)
Brachyura , Receptors, Vascular Endothelial Growth Factor , Vascular Endothelial Growth Factor A , Animals , Brachyura/metabolism , Brachyura/microbiology , Brachyura/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptors, Vascular Endothelial Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/genetics , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Amino Acid Sequence , Staphylococcus aureus , Gene Expression Regulation , Vibrio parahaemolyticus , Phylogeny , Hepatopancreas/metabolism , Hemocytes/metabolism
9.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673813

ABSTRACT

We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.


Subject(s)
Fat Body , Symbiosis , Transcriptome , Symbiosis/genetics , Animals , Fat Body/metabolism , Female , Gene Expression Profiling , Immune System/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics
10.
Fish Shellfish Immunol ; 149: 109546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614412

ABSTRACT

Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.


Subject(s)
Antimicrobial Peptides , Histones , Immunity, Innate , Mytilus , Animals , Mytilus/immunology , Mytilus/genetics , Histones/immunology , Histones/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Immunity, Innate/genetics , Gram-Negative Bacteria/physiology , Gram-Negative Bacteria/drug effects
11.
Bull Entomol Res ; 114(2): 281-292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602247

ABSTRACT

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.


Subject(s)
Insect Proteins , Larva , Moths , Animals , Moths/immunology , Moths/genetics , Moths/microbiology , Moths/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/growth & development , Larva/microbiology , Bacillus thuringiensis , Beauveria/physiology , Antimicrobial Peptides/genetics , Pupa/growth & development , RNA Interference
12.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502428

ABSTRACT

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Subject(s)
Flatfishes , Microalgae , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Administration, Oral , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Gastrointestinal Microbiome/drug effects , Aquaculture , Chlorophyta , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Staphylococcus aureus/drug effects
13.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552891

ABSTRACT

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Subject(s)
Antimicrobial Peptides , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/drug effects , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Fermentation , Gene Expression
14.
Equine Vet J ; 56(4): 670-677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430069

ABSTRACT

BACKGROUND: Endometritis is a major cause of subfertility in mares. Multiparous old mares are more susceptible to developing endometritis given that ageing is associated with an altered immune response and with inadequate physiological uterine clearance after breeding, which can lead to degenerative changes in the endometrium. Molecules such as antimicrobial peptides (AMPs) have been proposed as endometritis markers in the equine species. STUDY DESIGN: Cross-sectional. OBJECTIVES: To investigate the endometrial expression of defensin-beta 4B (DEFB4B), lysozyme (LYZ) and secretory leukocyte peptidase inhibitor (SLPI) genes in mares either affected or not by subclinical endometritis, due to the role of these AMPs in the immune response to bacteria and inflammatory reactions. METHODS: Endometrial biopsy for histopathological and gene expression examinations was performed on 26 mares. The inclusion criteria for the normal mare group (NM, N = 7) were 2-4 years of age, maiden status, no clinical signs of endometritis and a uterine biopsy score of I, while for mares affected by subclinical endometritis (EM, N = 19) the inclusion criteria were 10-22 years of age, barren status for 1-3 years, no clinical signs of endometritis and a uterine biopsy score between IIA and III. RESULTS: A significantly higher expression of LYZ (NM: 0.76 [1.84-0.37] vs. EM: 2.78 [5.53-1.44], p = 0.0255) and DEFB4B (NM: 0.06 [0.11-0.01] vs. EM: 0.15 [0.99-0.08], p = 0.0457) genes was found in endometritis mares versus normal mares. Statistically significant moderate positive correlations were found between the level of expression of LYZ gene and both the age (r = 0.4071, p = 0.039) and the biopsy grade (r = 0.4831, p = 0.0124) of the mares. MAIN LIMITATIONS: The study investigated a limited number of genes and mares, and the presence/location of the proteins coded by these genes was not confirmed within the endometrium by IHC. CONCLUSIONS: If the results of this study are confirmed, LYZ and DEFB4B genes can be used as markers to identify mares that are affected by subclinical endometritis.


Subject(s)
Antimicrobial Peptides , Biomarkers , Endometritis , Endometrium , Gene Expression Regulation , Horse Diseases , Animals , Female , Horses , Horse Diseases/metabolism , Endometritis/veterinary , Endometritis/metabolism , Endometritis/pathology , Endometrium/metabolism , Endometrium/pathology , Biomarkers/metabolism , Antimicrobial Peptides/genetics , Cross-Sectional Studies , beta-Defensins/genetics , beta-Defensins/metabolism
15.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329162

ABSTRACT

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Subject(s)
Insect Proteins , Larva , Moths , Animals , Moths/immunology , Moths/genetics , Moths/growth & development , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/growth & development , Larva/immunology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Hemocytes/metabolism , Immunity, Innate
16.
Protein J ; 43(2): 129-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180586

ABSTRACT

Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.


Subject(s)
Antimicrobial Peptides , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Bacteria/metabolism , Bacteria/genetics , Fungi/metabolism , Insecta/genetics , Insecta/metabolism , Plants/metabolism , Plants/chemistry , Plants/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis
17.
Protein Pept Lett ; 31(2): 141-152, 2024.
Article in English | MEDLINE | ID: mdl-38243926

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES: To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system. RESULTS: Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of ß -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION: Antimicrobial peptides Histatin 1, ß -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.


Subject(s)
Escherichia coli , Histatins , Recombinant Fusion Proteins , Histatins/genetics , Histatins/metabolism , Histatins/chemistry , Histatins/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Microbial Sensitivity Tests , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/biosynthesis , Antimicrobial Peptides/metabolism , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/chemistry , Humans
18.
Nature ; 626(7998): 377-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109938

ABSTRACT

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Subject(s)
Archaea , Bacteria , Ecosystem , Evolution, Molecular , Genes, Archaeal , Genes, Bacterial , Genomics , Knowledge , Antimicrobial Peptides/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biomarkers , Cell Movement/genetics , Colorectal Neoplasms/genetics , Genomics/methods , Genomics/trends , Metagenomics/trends , Multigene Family , Phylogeny , Reproducibility of Results
19.
Science ; 381(6655): eadg5725, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37471548

ABSTRACT

Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.


Subject(s)
Acetobacter , Antimicrobial Peptides , Drosophila Proteins , Drosophila melanogaster , Host-Pathogen Interactions , Microbiota , Providencia , Animals , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Evolution, Molecular , Host-Pathogen Interactions/immunology
20.
PLoS Genet ; 19(4): e1010725, 2023 04.
Article in English | MEDLINE | ID: mdl-37104544

ABSTRACT

The necrotrophic plant pathogenic bacterium Dickeya solani emerged in the potato agrosystem in Europe. All isolated strains of D. solani contain several large polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene clusters. Analogy with genes described in other bacteria suggests that the clusters ooc and zms are involved in the production of secondary metabolites of the oocydin and zeamine families, respectively. A third cluster named sol was recently shown to produce an antifungal molecule. In this study, we constructed mutants impaired in each of the three secondary metabolite clusters sol, ooc, and zms to compare first the phenotype of the D. solani wild-type strain D s0432-1 with its associated mutants. We demonstrated the antimicrobial functions of these three PKS/NRPS clusters against bacteria, yeasts or fungi. The cluster sol, conserved in several other Dickeya species, produces a secondary metabolite inhibiting yeasts. Phenotyping and comparative genomics of different D. solani wild-type isolates revealed that the small regulatory RNA ArcZ plays a major role in the control of the clusters sol and zms. A single-point mutation, conserved in some Dickeya wild-type strains, including the D. solani type strain IPO 2222, impairs the ArcZ function by affecting its processing into an active form.


Subject(s)
Antimicrobial Peptides , Multigene Family , Point Mutation , Multigene Family/genetics , Genomics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Polyketide Synthases/genetics , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Ascomycota/drug effects , Dickeya/genetics , Dickeya/metabolism , Gene Expression Regulation, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...