Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 180: 114066, 2022 01.
Article in English | MEDLINE | ID: mdl-34813794

ABSTRACT

Antimicrobial peptides and proteins (APPs) are becoming increasingly important in targeting multidrug-resistant (MDR) bacteria. APPs is a rapidly emerging area with novel molecules being produced and further optimised to enhance antimicrobial efficacy, while overcoming issues associated with biologics such as potential toxicity and low bioavailability resulting from short half-life. Inhalation delivery of these agents can be an effective treatment of respiratory infections owing to the high local drug concentration in the lungs with lower exposure to systemic circulation hence reducing systemic toxicity. This review describes the recent studies on inhaled APPs, including in vitro and in vivo antimicrobial activities, toxicity assessments, and formulation strategies whenever available. The review also includes studies on combination of APPs with other antimicrobial agents to achieve enhanced synergistic antimicrobial effect. Since different APPs have different biological and chemical stabilities, a targeted formulation strategy should be considered for developing stable and inhalable antimicrobial peptides and proteins. These strategies include the use of sodium chloride to reduce electrostatic interaction between APP and extracellular DNA in sputum, the use of D-enantiomers or dendrimers to minimise protease-mediated degradation and or the use of prodrugs to reduce toxicity. Although great effort has been put towards optimising the biological functions of APPs, studies assessing biological stability in inhalable aerosols are scarce, particularly for novel molecules. As such, formulation and manufacture of inhalable liquid and powder formulations of APPs are underexplored, yet they are crucial areas of research for clinical translation.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antimicrobial Peptides/administration & dosage , Proteins/administration & dosage , Administration, Inhalation , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Antimicrobial Peptides/adverse effects , Antimicrobial Peptides/pharmacokinetics , Chemistry, Pharmaceutical/methods , Drug Development/methods , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Proteins/adverse effects , Proteins/pharmacokinetics , Tissue Distribution
2.
Protein Pept Lett ; 28(11): 1312-1322, 2021.
Article in English | MEDLINE | ID: mdl-34477502

ABSTRACT

AIM: This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet, the study was further aimed at corroborating structural and functional studies using biophysical tools. BACKGROUND: Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offer the best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. OBJECTIVE: Objectives of this study include construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide against MRSA strains. METHODS: In this study, we used an array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC (minimum inhibitory concentration) and IC50 values of antimicrobial peptide. To establish the structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out. RESULTS: Screening of metagenomic library resulted in the identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE, which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in a broad range of pH and temperature. MIC determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas, in the case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at a wide range of temperature and pH. CONCLUSION: Altogether, the peptide discovered from rhizosphere metagenome holds potential in inhibiting the growth of both gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Bacteria/growth & development , Cloning, Molecular , Metagenome , Rhizosphere , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/biosynthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacokinetics , Humans
3.
J Biomed Mater Res B Appl Biomater ; 109(11): 1787-1795, 2021 11.
Article in English | MEDLINE | ID: mdl-33763981

ABSTRACT

Medical devices such as orthopedic and dental implants may get infected by bacteria, which results in treatment using antibiotics. Since antibiotic resistance is increasing in society there is a need of finding alternative strategies for infection control. One potential strategy is the use of antimicrobial peptides, AMPs. In this study, we investigated the antibiofilm effect of the AMP, RRP9W4N, using a local drug-delivery system based on mesoporous titania covered titanium implants. Biofilm formation was studied in vitro using a safranine biofilm assay and LIVE/DEAD staining. Moreover, we investigated what effect the AMP had on osseointegration of commercially available titanium implants in vivo, using a rabbit tibia model. The results showed a sustained release of AMP with equal or even better antibiofilm properties than the traditionally used antibiotic Cloxacillin. In addition, no negative effects on osseointegration in vivo was observed. These combined results demonstrate the potential of using mesoporous titania as an AMP delivery system and the potential use of the AMP RRP9W4N for infection control of osseointegrating implants.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Implants, Experimental , Osseointegration , Titanium/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacokinetics , Antimicrobial Peptides/pharmacology , Cloxacillin/chemistry , Cloxacillin/pharmacokinetics , Cloxacillin/pharmacology , Porosity , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...