Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 856
Filter
1.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569970

ABSTRACT

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Subject(s)
Antimony , Arsenic , Charcoal , Environmental Restoration and Remediation , Graphite , Mining , Soil Pollutants , Antimony/chemistry , Antimony/analysis , Graphite/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Environmental Restoration and Remediation/methods , Soil/chemistry
2.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580110

ABSTRACT

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Subject(s)
Antimony , Iron , Sewage , Sulfates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Antimony/analysis , Anaerobiosis , Carbon
3.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604967

ABSTRACT

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Subject(s)
Arsenic , Mercury , Trace Elements , Acetates , Aluminum/analysis , Antimony/analysis , Arsenic/analysis , Barium/analysis , Beryllium/analysis , Cadmium/analysis , Chromium , Clay , Cobalt/analysis , Copper , Lithium/analysis , Magnesium , Mass Spectrometry , Mercury/analysis , Molybdenum/analysis , Nickel , Silver/analysis , Thallium/analysis , Tin/analysis , Titanium/analysis , Trace Elements/analysis , Zinc , China
4.
Ecotoxicol Environ Saf ; 277: 116377, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657454

ABSTRACT

The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.


Subject(s)
Antimony , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Antimony/chemistry , Antimony/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Environmental Monitoring/methods , Mining , Adsorption , Humic Substances/analysis
5.
Environ Pollut ; 351: 124016, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38648966

ABSTRACT

The accumulation of antimony (Sb) in plants and its potential effects on human health are of increasing concern. Nevertheless, only a few countries or regions have established soil Sb thresholds for agricultural purposes, and soil properties have not been taken into account. This study investigated the accumulation of Sb in the edible parts of pakchoi and wheat grain by adding exogenous Sb to 21 soils with varying properties. The results revealed a positive correlation between bioavailable Sb (Sbava, extracted by 0.1 M K2HPO4) in soil and Sb in the edible parts of pakchoi (R2 = 0.77, p < 0.05) and wheat grain (R2 = 0.54, p < 0.05). Both machine learning and traditional multiple regression analysis indicated Sbava was the most critical feature and the main soil properties that contributed to Sb uptake by pakchoi and wheat were CaCO3 and clay, respectively. The advisory food limits for Sb in pakchoi and wheat were estimated based on health risk assessment, and used to derive soil thresholds for safe pakchoi and wheat production based on Sbtot and Sbava, respectively. These findings hold potential for predicting Sb uptake by crops with different soil properties and informing safe production management strategies.


Subject(s)
Antimony , Soil Pollutants , Soil , Triticum , Antimony/analysis , Antimony/metabolism , Triticum/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Crops, Agricultural/metabolism , Environmental Monitoring/methods , Ecosystem
6.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582422

ABSTRACT

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Subject(s)
Antimony , Catechols , Electrochemical Techniques , Hydroquinones , Pyrolysis , Hydroquinones/chemistry , Hydroquinones/analysis , Catechols/analysis , Catechols/chemistry , Antimony/chemistry , Antimony/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sulfides/chemistry
7.
Waste Manag ; 179: 192-204, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484540

ABSTRACT

Research to prevent releases of brominated flame retardants listed as persistent organic pollutants by the Stockholm Convention (POP-BFRs) was conducted through an international cooperation project in Colombia. Six waste electrical and electronic equipment (WEEE) management facilities implemented: 1) sorting e-waste by product type and color (black, white, and other; henceforth called chromoproducts), 2) sampling test products and their plastic fraction (called sets, separated by polymer type), 3) monitoring mass, bromine and antimony contents by hand-held X-ray fluorescence (XRF) and POP-BFRs such as polybrominated diphenyl ethers (PBDEs) by gas chromatography and mass spectrometry (GC-MS), and 4) differentiated treatment according to categories that used the Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (RoHS) hazardousness threshold of 1000 mg ∑PBDEs/kg. This scheme led to the proposal of a methodology for WEEE management called the "chromoproduct approach". 994,230 products were managed and grouped into 222 chromoproducts, from which 77 were analyzed: 50 below RoHS hazardousness (BRH), 16 above RoHS hazardousness (ARH), and 11 unknown RoHS hazardousness (URH). XRF indicators using bromine and antimony contents could rule out pollution in BRH chromoproducts; however, categorization still required GC-MS. One ARH plastics sample had 3620 mg ∑PBDEs/kg, while no POP-BFRs were found in the BRH plastics sample. The implementation of the chromoproduct approach traced 153.6 tonnes of ARH plastics. BRH plastics composition was estimated and used in a pilot-scale closed-loop economic activity. The chromoproduct approach seems promising for avoiding POP-BFR releases and promoting the upcycling of recyclable e-waste plastics.


Subject(s)
Electronic Waste , Flame Retardants , Plastics/analysis , Electronic Waste/analysis , Colombia , Antimony/analysis , Bromine/analysis , Waste Products/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis
8.
Water Res ; 254: 121427, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38467095

ABSTRACT

Antimony (Sb) isotopic fingerprinting is a novel technique for stable metal isotope analysis, but the use of this technique is still limited, especially in sediments. In this study, the world's most important Sb mineralization belt (the Xikuangshan mineralization belt) was taken as the research object and the Sb isotopic composition and Sb enrichment characteristics in the sediments of water systems from different Sb mining areas located in the Zijiang River (ZR) Basin were systematically studied. The results showed that the ε123Sb values in the sediments of the ZR and its tributaries, such as those near the Longshan Sb-Au mine, the Xikuangshan Sb mine, and the Zhazixi Sb mine, were 0.50‒3.13 ε, 2.31‒3.99 ε, 3.12‒5.63 ε and 1.14‒2.91 ε, respectively, and there were obvious changes in Sb isotopic composition. Antimony was mainly enriched in the sediments due to anthropogenic sources. Dilution of Sb along the river and adsorption of Sb to Al-Fe oxides in the sediment did not lead to obvious Sb isotopic fractionation in the sediment, indicating that the Sb isotopic signature was conserved during transport along the river. The Sb isotopic signatures measured in mine-affected streams may have differed from those in the original Sb ore, and further investigation of Sb isotopic fingerprints from other possible sources and unknown geochemical processes is needed. This study reveals that the apparent differences in ε123Sb values across regions make Sb isotopic analysis a potentially suitable tool for tracing Sb sources and biogeochemical processes in the environment.


Subject(s)
Antimony , Water Pollutants, Chemical , Antimony/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals/analysis , Rivers/chemistry , Geologic Sediments/chemistry
9.
Environ Res ; 251(Pt 2): 118645, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38485077

ABSTRACT

Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.


Subject(s)
Antimony , Charcoal , Environmental Restoration and Remediation , Soil Pollutants , Antimony/analysis , Antimony/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Decontamination/methods , Soil/chemistry
10.
Environ Sci Pollut Res Int ; 31(8): 12499-12510, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233709

ABSTRACT

Exploring the influence of soil on antimony (Sb) aging could help predict Sb toxicity on nematodes that play an important role in agricultural soil nitrogen cycling. This study aimed to investigate the major soil factors affecting the aging process and toxicity of exogenous Sb. Therefore, nematodes were exposed to varying levels of Sb contamination (0-6400 mg/kg) in nine agricultural soils, with aging periods of 7, 56, and 168 days, under dark conditions at 20 ± 0.5 °C for 96 h. The results suggested that nematode reproduction was more sensitive to the toxicity of exogenous trivalent Sb (Sb(III)) compared to growth and fertility. Following 7-168 days of aging, the EC50 of nematode reproduction increased from 546-1557 to 3560-6193 mg/kg in nine soils contaminated by exogenous Sb(III). Exogenous Sb(III) toxicity is overestimated without considering its aging process. The aging factors (AF) of nine soils aged over 7-168 days were calculated as 3.54-8.03. The regression equation AF = 0.923 pH - 0.812 (n = 9, adjust-r2 = 0.687, P = 0.004) indicated that pH was the primary soil factor explaining 85.2% of the variance in the aging process of exogenous Sb(III). No significant toxicity was observed in soils contaminated with exogenous pentavalent Sb after 7 days of aging. These findings could provide guidance for the adjustment of Sb toxicity data, the revision of soil environmental quality standard, and efficient soil environmental management.


Subject(s)
Soil Pollutants , Soil , Animals , Caenorhabditis elegans , Antimony/toxicity , Antimony/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Reproduction
11.
Int J Environ Health Res ; 34(4): 1977-1994, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37097044

ABSTRACT

In this study investigation of accumulations of critical raw materials (cobalt (Co), antimony (Sb), vanadium (V), lanthanum (La) and tungsten (W)) from wastewater by using C. fracta were aimed. Besides, assessment of the potential health risks in terms of the use of organic fertilizer obtained from the macroalga to be harvested from the treatment were also aimed. Highest Co, Sb, V, La and W accumulations by algae in reactor were 125±6.2%, 201.25±10%, 318.18±15%, 357.97±18%, and 500±25%, respectively. When compared with control, Co, Sb, V, La and W in algae increased 2.25, 3.01, 4.18, 4.58, and 6 times, respectively. The algae was very high bioaccumulative for Co and La. Highest MPI was calculated as 3.94. Non-carcinogenic risk of CRMs according to different exposure types (ingestion, inhalation, and dermal) were calculated for man, woman and child. There is not any non-carcinogenic risk from the investigated exposure ways of algae as organic fertilizer.


Subject(s)
Fertilizers , Wastewater , Male , Child , Female , Humans , Wastewater/toxicity , Antimony/analysis , Tungsten
12.
Sci Total Environ ; 912: 169009, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040368

ABSTRACT

It has been established that the coevolution of plants and the rhizosphere microbiome in response to abiotic stress can result in the recruitment of specific functional microbiomes. However, the potential of inoculated rhizosphere microbiomes to enhance plant fitness and the inheritance of adaptive traits in subsequent generations remains unclear. In this study, cross-inoculation trials were conducted using seeds, rhizosphere microbiome, and in situ soil collected from areas of Betula luminifera grown in both antimony mining and control sites. Compared to the control site, plants originating from mining areas exhibited stronger adaptive traits, specifically manifested as significant increases in hundred-seed weight, specific surface area, and germination rate, as well as markedly enhanced seedling survival rate and biomass. Inoculation with mining microbiomes could enhance the fitness of plants in mining sites through a "home-field advantage" while also improving the fitness of plants originating from control sites. During the initial phase of seedling development, bacteria play a crucial role in promoting growth, primarily due to their mechanisms of metal resistance and nutrient cycling. This study provided evidence that the outcomes of long-term coevolution between plants and the rhizosphere microbiome in mining areas can be passed on to future generations. Moreover, it has been demonstrated that transgenerational inheritance and rhizosphere microbiome inoculation are important factors in improving the adaptability of plants in mining areas. The findings have important implications for vegetation restoration and ecological environment improvement in mining areas.


Subject(s)
Antimony , Rhizosphere , Antimony/analysis , Betula , Metals/analysis , Plants/microbiology , Mining , Soil Microbiology , Plant Roots/microbiology , Soil
14.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894645

ABSTRACT

A novel strategy to assess the main variables that potentially affect the migration of antimony from PET bottles to beverages, including mineral waters and juices, is herein proposed. In a preliminary step, an LC-ICP-MS method previously used for water analysis was optimized to correct identify Sb species present in the studied matrices using HRMS. Subsequently, the influence of temperature and storage time up to 30 days on Sb migration from PET bottles into peach and pineapple juices of the same brand was studied. Storing PET bottled drinks at elevated temperatures (i.e., in a hot car or in summer) can cause antimony migration to exceed the limits allowed in the EU or USA. Because the behavior observed differed from the results reported for Sb migration in mineral waters, a second approach was proposed: three mineral water and two juice samples were kept in different PET containers and stored at an elevated temperature (up to 60 °C) to understand the role of the PET type and matrix simultaneously. This study demonstrated that both matrix characteristics and type of PET bottle greatly influence antimony leaching, highlighting the need to consider these variables together when conducting migration experiments. The obtained results can be helpful for developing future legislation concerning migration of pollutants from packing to food commodities.


Subject(s)
Drinking Water , Mineral Waters , Antimony/analysis , Polyethylene Terephthalates/analysis , Beverages/analysis , Food Packaging , Drinking Water/analysis
15.
Sci Total Environ ; 904: 167001, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37704155

ABSTRACT

As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.


Subject(s)
Ferric Compounds , Iron , Ferric Compounds/metabolism , Iron/metabolism , Nitrate Reductase/metabolism , Ferrosoferric Oxide , Proteomics , Oxidation-Reduction , Minerals/metabolism , Antimony/analysis
16.
Sci Total Environ ; 905: 166999, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37714340

ABSTRACT

Archaea are important ecological components of microbial communities in various environments, but are currently poorly investigated in antimony (Sb) contaminated groundwater particularly on their ecological differences in comparison with bacteria. To address this issue, groundwater samples were collected from Xikuangshan aquifer along an Sb gradient and subjected to 16S rRNA gene amplicon sequencing and bioinformatic analysis. The results demonstrated that bacterial communities were more susceptibly affected by elevated Sb concentration than their archaeal counterparts, and the positive stimulation of Sb concentration on bacterial diversity coincided with the intermediate disturbance hypothesis. Overall, the balance of environmental variables (Sb, pH, and EC), competitive interactions, and stochastic events jointly regulated bacterial and archaeal communities. Linear fitting analysis revealed that Sb significantly drove the deterministic process (heterogeneous selection) of bacterial communities, whereas stochastic process (dispersal limitation) contributed more to archaeal community assembly. In contract, the assembly of Sb-resistant bacteria and archaea was dominated by the stochastic process (undominated), which implied the important role of diversification and drift instead of selection. Compared with Sb-resistant microorganisms, bacterial and archaeal communities showed lower niche width, which may result from the constraints of Sb concentration and competitive interaction. Moreover, Sb-resistant archaea had a higher niche than that of Sb-resistant bacteria via investing on flexible metabolic pathways such as organic metabolism, ammonia oxidation; and carbon fixation to enhance their competitiveness. Our results offered new insights into the ecological adaptation mechanisms of bacteria and archaea in Sb-contaminated groundwater.


Subject(s)
Archaea , Groundwater , Archaea/genetics , Antimony/analysis , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Groundwater/chemistry
17.
Environ Pollut ; 337: 122538, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37709119

ABSTRACT

Fenton sludge (FS) with high iron contents that discharged from the Fenton process was rarely studied for soil remediation. Herein, a novel Fe(Ⅱ) activated-Fenton sludge (FS-FeSO4) was proposed to stabilize arsenic (As) and antimony (Sb) co-contaminated soil meanwhile disposing FS. Multiple characteristic analyses revealed that the porous structures and rich functional groups of FS-FeSO4 involved in As and Sb adsorption. Meanwhile, Fe (hydro)oxides played a key role in As and Sb stabilization. Under the optimal application parameters (stabilizers dosage: 5%, incubation time: 60 days), the available As and Sb content decreased by 88.6% and 83.3%, respectively, and the leachability of As and Sb was reduced by 100% and 72.6% for FS-FeSO4 stabilized soil. Moreover, the mobile As and Sb fractions (F1 and F2) were transformed into the most stable fraction (F5). The adsorption of As and Sb on FS-FeSO4 was well fitted by pseudo-second-order kinetic and Langmuir models, while FS-FeSO4 exhibited a better affinity for As than Sb under competition conditions. Poorly crystalline α-FeOOH and amorphous Fe (hydro)oxides provided sufficient active sites for As and Sb, and the generation of Fe-As/Sb and Ca-Sb chemical bonds promoted the stability of As and Sb. This study demonstrated that FS-FeSO4 was a potentially effective stabilizer for As and Sb co-contaminated soil remediation.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Antimony/analysis , Sewage , Soil Pollutants/analysis , Soil/chemistry , Oxides/chemistry , Ferrous Compounds/chemistry
18.
Environ Sci Pollut Res Int ; 30(48): 105808-105828, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37721674

ABSTRACT

Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.


Subject(s)
Antimony , Microbiota , Antimony/analysis , Oxidation-Reduction , Bacteria , Mining
19.
Environ Pollut ; 337: 122637, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37769707

ABSTRACT

Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.


Subject(s)
Iron , Water Pollutants, Chemical , Humans , Iron/analysis , Antimony/analysis , Electrons , Adsorption , Charcoal , Water , Oxidative Stress , Water Pollutants, Chemical/analysis
20.
Sci Total Environ ; 904: 166305, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586541

ABSTRACT

As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Soil/chemistry , Oligochaeta/physiology , Antimony/toxicity , Antimony/analysis , Ecosystem , Soil Pollutants/toxicity , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...