Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.221
Filter
1.
Cell Biochem Funct ; 42(4): e4062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807490

ABSTRACT

Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cymenes , Quantum Dots , Zinc Oxide , Humans , Quantum Dots/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemical synthesis , Cymenes/pharmacology , Cymenes/chemistry , Hydrogen-Ion Concentration , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Female , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
2.
J Biol Inorg Chem ; 29(3): 303-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38727821

ABSTRACT

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Subject(s)
Cell Survival , Indoles , Organosilicon Compounds , Prostatic Neoplasms , Schiff Bases , Singlet Oxygen , Humans , Indoles/chemistry , Indoles/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Male , Singlet Oxygen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Cell Survival/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , PC-3 Cells , Photochemotherapy , Photochemical Processes , Cell Line, Tumor , Molecular Structure
3.
J Med Chem ; 67(10): 7995-8019, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739112

ABSTRACT

Based on the close relationship between programmed death protein ligand 1 (PD-L1) and epidermal growth factor receptor (EGFR) in glioblastoma (GBM), we designed and synthesized a series of small molecules as potential dual inhibitors of EGFR and PD-L1. Among them, compound EP26 exhibited the highest inhibitory activity against EGFR (IC50 = 37.5 nM) and PD-1/PD-L1 interaction (IC50 = 1.77 µM). In addition, EP26 displayed superior in vitro antiproliferative activities and in vitro immunomodulatory effects by promoting U87MG cell death in a U87MG/Jurkat cell coculture model. Furthermore, EP26 possessed favorable pharmacokinetic properties (F = 22%) and inhibited tumor growth (TGI = 92.0%) in a GBM mouse model more effectively than Gefitinib (77.2%) and NP19 (82.8%). Moreover, EP26 increased CD4+ cells and CD8+ cells in tumor microenvironment. Collectively, these results suggest that EP26 represents the first small-molecule-based PD-L1/EGFR dual inhibitor deserving further investigation as an immunomodulating agent for cancer treatment.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , ErbB Receptors , Glioblastoma , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacokinetics , Immunotherapy/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
4.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749343

ABSTRACT

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Subject(s)
Nucleotidyltransferases , Small Molecule Libraries , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Animals , Structure-Activity Relationship , Protein Binding , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , DNA-Directed DNA Polymerase/metabolism , Mice , Translesion DNA Synthesis
5.
Drug Dev Res ; 85(4): e22197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751223

ABSTRACT

Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the ß-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Design , Phthalimides , Tubulin Modulators , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Phthalimides/chemical synthesis , Phthalimides/pharmacology , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology
6.
Sci Rep ; 14(1): 11707, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777818

ABSTRACT

Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.


Subject(s)
Antineoplastic Agents , Green Chemistry Technology , Metal Nanoparticles , Ocimum , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Humans , Green Chemistry Technology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ocimum/chemistry , MCF-7 Cells , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Apoptosis/drug effects , Particle Size
7.
Org Lett ; 26(20): 4212-4217, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38743309

ABSTRACT

An unusual rhodium-catalyzed C-H activation/Lossen rearrangement/oxa-Michael addition tandem cyclization has been achieved along with a tunable well-known C-H activation/[4 + 2] annulation, leading to regio-, chemo-, and diastereoselective access to diverse pentacyclic α-carbolines and ß-carboline-1-one derivatives in moderate to good yields with significant anticancer activity.


Subject(s)
Antineoplastic Agents , Carbolines , Rhodium , Rhodium/chemistry , Carbolines/chemistry , Carbolines/chemical synthesis , Carbolines/pharmacology , Catalysis , Cyclization , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Stereoisomerism , Humans , Drug Screening Assays, Antitumor
8.
Yakugaku Zasshi ; 144(5): 553-565, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692932

ABSTRACT

A series of antitumor bicyclic hexapeptide RA-VII analogues modified at residue 2, 3, or 6 were prepared by the chemical transformation of the hydroxy, methoxy, or carboxy groups or the aromatic rings of natural peptides RA-II, III, V, VII, and X. Analogues with modified side chains or peptide backbones, which cannot be prepared by the chemical transformation of their natural peptides, and newly isolated peptides from Rubia cordifolia roots were synthesized by using protected cycloisodityrosines prepared by the degradation of bis(thioamide) obtained from RA-VII or the diphenyl ether formation of boronodipeptide under the modified Chan-Lam coupling reaction conditions. Studies of the conformational features of the analogues and the newly isolated peptides and their relationships with cytotoxic activities against the HCT-116, HL-60, KATO-III, KB, L1210, MCF-7, and P-388 cell lines revealed the following: the methoxy group at residue 3 is essential for the potent cytotoxic activity; the methyl group at Ala-2 and Ala-4 but not at D-Ala-1 is required to establish the bioactive conformation; the N-methyl group at Tyr-5 is necessary for the peptides to adopt the active conformation preferentially; and the orientation of Tyr-5 and/or Tyr-6 phenyl rings has a significant effect on the cytotoxic activity.


Subject(s)
Peptides, Cyclic , Humans , Structure-Activity Relationship , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Rubia/chemistry , Plant Roots/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Protein Conformation
9.
Bioorg Chem ; 147: 107413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696844

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cyclin-Dependent Kinase 2 , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Roscovitine , Humans , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Roscovitine/pharmacology , Roscovitine/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Purines/pharmacology , Purines/chemistry , Purines/chemical synthesis
10.
Bioorg Chem ; 147: 107419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703440

ABSTRACT

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Enhancer of Zeste Homolog 2 Protein , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Pyridones , Humans , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Animals , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Cell Movement/drug effects
11.
Bioorg Chem ; 147: 107421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714118

ABSTRACT

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Homeostasis , Hydroxamic Acids , Iron , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Iron/metabolism , Iron/chemistry , Cell Proliferation/drug effects , Homeostasis/drug effects , Structure-Activity Relationship , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Molecular Structure , Apoptosis/drug effects , Anions/chemistry , Anions/pharmacology , Dose-Response Relationship, Drug , Animals , Cell Line, Tumor , Mice , Quinine/analogs & derivatives
12.
Bioorg Chem ; 147: 107425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714117

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Drug Design , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Protein Kinase Inhibitors , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Hep G2 Cells , Molecular Structure , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/metabolism , Molecular Docking Simulation , Dose-Response Relationship, Drug , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
13.
J Am Chem Soc ; 146(19): 12901-12906, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701349

ABSTRACT

Cholesterol-rich membranes play a pivotal role in cancer initiation and progression, necessitating innovative approaches to target these membranes for cancer inhibition. Here we report the first case of unnatural peptide (1) assemblies capable of depleting cholesterol and inhibiting cancer cells. Peptide 1 self-assembles into micelles and is rapidly taken up by cancer cells, especially when combined with an acute cholesterol-depleting agent (MßCD). Click chemistry has confirmed that 1 depletes cell membrane cholesterol. It localizes in membrane-rich organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. Furthermore, 1 potently inhibits malignant cancer cells, working synergistically with cholesterol-lowering agents. Control experiments have confirmed that C-terminal capping and unnatural amino acid residues (i.e., BiP) are essential for both cholesterol depletion and potent cancer cell inhibition. This work highlights unnatural peptide assemblies as a promising platform for targeting the cell membrane in controlling cell fates.


Subject(s)
Cholesterol , Peptides , Humans , Cholesterol/chemistry , Cholesterol/metabolism , Peptides/chemistry , Peptides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects
14.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731527

ABSTRACT

An expeditious synthesis of γ- and δ-lactams from tethered alkenyl trichloroacetamides in the presence of 5% of RuCl2(PPh3)3 is reported. In this investigation we have demonstrated that microwave activation significantly enhances reaction rates, leading to the formation of the corresponding lactams in yields ranging from good to excellent. Thus, we have been able to prepare a wide range of lactams, including indole and morphan bicyclic scaffolds, where the corresponding reactions were completely diastereoselective. This process was successfully extended to α,α-dichloroamides without affecting either their yield or their diastereoselectivity. Some of the lactams prepared in this work were evaluated for their hemolytic and cytotoxic responses. All compounds were found to be non-hemolytic at the tested concentration, indicating their safety profile in terms of blood cell integrity. Meanwhile, they exhibited interesting cytotoxicity responses that depend on both their lactam structure and cell line. Among the molecules tested, γ-lactam 2a exhibited the lowest IC50 values (100-250 µg/mL) as a function of its cell line, with promising selectivity against squamous carcinoma cells (A431) in comparison with fibroblasts (3T3 cell line).


Subject(s)
Lactams , Microwaves , Lactams/chemistry , Lactams/chemical synthesis , Lactams/pharmacology , Cyclization , Humans , Catalysis , Mice , Animals , Cell Line, Tumor , Acetamides/chemistry , Acetamides/chemical synthesis , Acetamides/pharmacology , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
15.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731532

ABSTRACT

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Flavonols , Humans , Flavonols/pharmacology , Flavonols/chemical synthesis , Flavonols/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , A549 Cells , Caspase 3/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Fluorouracil/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Drug Screening Assays, Antitumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor
16.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731629

ABSTRACT

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Subject(s)
Antineoplastic Agents , Antioxidants , Benzimidazoles , Cell Proliferation , Drug Design , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , MCF-7 Cells , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Molecular Structure , Microbial Sensitivity Tests , Oxidative Stress/drug effects
17.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731639

ABSTRACT

The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.


Subject(s)
Antineoplastic Agents , Pyridines , Ruthenium , Humans , Catalysis , Ruthenium/chemistry , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Molecular Structure , Photochemical Processes
18.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700457

ABSTRACT

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
19.
Curr Pharm Des ; 30(4): 255-277, 2024.
Article in English | MEDLINE | ID: mdl-38711394

ABSTRACT

BACKGROUND: The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE: The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS: A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION: Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.


Subject(s)
Antineoplastic Agents , Neoplasms , Pyridines , Pyrroles , Humans , Neoplasms/drug therapy , Neoplasms/diagnosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Animals
20.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731842

ABSTRACT

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Subject(s)
Autophagy , Drug Design , Peptides, Cyclic , Humans , Autophagy/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Microtubule-Associated Proteins/metabolism , Molecular Docking Simulation , A549 Cells , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...